Asral Bahari Jambek
Universiti Malaysia Perlis

Published : 13 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 13 Documents
Search

Performance analysis of low-complexity welch power spectral density for automatic frequency analyser Teh Yi Jun; Asral Bahari Jambek; Uda Hashim
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.934 KB) | DOI: 10.11591/eei.v8i1.1393

Abstract

The aim of this paper is to investigate the performance of the Low Complexity Welch Power Spectral Density Computation (PSDC). This algorithm is an improvement from Welch PSDC method to reduce the computational complexity of the method. The effect of the sampling rate and the input frequency toward to accuracy of frequency detection is being evaluated. From the experiment results, sampling rate nearest to the twice of the input frequency provides the highest accuracy which achieved 99%. The ability of the algorithm to perform complex signal also has been investigated.
Performance comparison of automatic peak detection for signal analyser Teh Yi Jun; Asral Bahari Jambek; Uda Hashim
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (469.888 KB) | DOI: 10.11591/eei.v8i1.1394

Abstract

The aim of this paper is to propose a new peak detection method for a portable device, which know as modified automatic threshold peak detection (M-ATPD). M-ATPD evolves out of ATPD with a focus on reducing computational time. The proposed method replaces the clustering threshold calculation in ATPD with a standard deviation threshold calculation. M-ATPD reduces computational time by 2 times faster compared to ATPD for control signal and 8.65 times faster compared to ATPD for raw biosignals. Modified ATPD also shows a slight improvement in terms of detection error, with a decrease of about 6.66% to 13.33% in peak detection of noise signals. Modified ATPD successfully fixes the error of peak detection on pulse control signals associated with ATPD.  For raw biosignals, in total M-ATPD achieved 19.41% lower detection error compare to ATPD.
SOC integration for video processing application Chan Boon Cheng; Asral Bahari Jambek
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (563.716 KB) | DOI: 10.11591/eei.v8i1.1396

Abstract

Video processing is an additional system that can improve the functionality of video surveillance. Integration of a simple video processing system into a complete camera system with a field-programmable gate array (FPGA) is an important step for research, to further improve the tracking process. This paper presents the integration of greyscale conversion into a complete camera system using Nios II software build tools for Eclipse. The camera system architecture is designed using the Nios II soft-core embedded processor from Altera. The proposed greyscale conversion system is designed using the C programming language in Eclipse. Parts of the architecture design in the camera system are important if greyscale conversion is to take place in the processing, such as synchronous dynamic random-access memory (SDRAM) and a video decoder driver. The image or video is captured using a Terasic TRDB-D5M camera and the data are converted to RGB format using the video decoder driver. The converted data are shown in binary format and the greyscale conversion system extracts and processes the data. The processed data are stored in the SDRAM before being sent to a VGA monitor. The camera system and greyscale conversion system were developed using the Altera DE2-70 development platform. The data from the video decoder driver and SDRAM were examined to confirm that the data conversion matched greyscale conversion formulae. The converted data in the SDRAM correctly displayed the greyscale image on a VGA monitor.
Performance analysis of low-complexity welch power spectral density for automatic frequency analyser Teh Yi Jun; Asral Bahari Jambek; Uda Hashim
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.858 KB) | DOI: 10.11591/eei.v8i1.1393

Abstract

The aim of this paper is to investigate the performance of the Low Complexity Welch Power Spectral Density Computation (PSDC). This algorithm is an improvement from Welch PSDC method to reduce the computational complexity of the method. The effect of the sampling rate and the input frequency toward to accuracy of frequency detection is being evaluated. From the experiment results, sampling rate nearest to the twice of the input frequency provides the highest accuracy which achieved 99%. The ability of the algorithm to perform complex signal also has been investigated.
Performance comparison of automatic peak detection for signal analyser Teh Yi Jun; Asral Bahari Jambek; Uda Hashim
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (469.671 KB) | DOI: 10.11591/eei.v8i1.1394

Abstract

The aim of this paper is to propose a new peak detection method for a portable device, which know as modified automatic threshold peak detection (M-ATPD). M-ATPD evolves out of ATPD with a focus on reducing computational time. The proposed method replaces the clustering threshold calculation in ATPD with a standard deviation threshold calculation. M-ATPD reduces computational time by 2 times faster compared to ATPD for control signal and 8.65 times faster compared to ATPD for raw biosignals. Modified ATPD also shows a slight improvement in terms of detection error, with a decrease of about 6.66% to 13.33% in peak detection of noise signals. Modified ATPD successfully fixes the error of peak detection on pulse control signals associated with ATPD.  For raw biosignals, in total M-ATPD achieved 19.41% lower detection error compare to ATPD.
SOC integration for video processing application Chan Boon Cheng; Asral Bahari Jambek
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (572.279 KB) | DOI: 10.11591/eei.v8i1.1396

Abstract

Video processing is an additional system that can improve the functionality of video surveillance. Integration of a simple video processing system into a complete camera system with a field-programmable gate array (FPGA) is an important step for research, to further improve the tracking process. This paper presents the integration of greyscale conversion into a complete camera system using Nios II software build tools for Eclipse. The camera system architecture is designed using the Nios II soft-core embedded processor from Altera. The proposed greyscale conversion system is designed using the C programming language in Eclipse. Parts of the architecture design in the camera system are important if greyscale conversion is to take place in the processing, such as synchronous dynamic random-access memory (SDRAM) and a video decoder driver. The image or video is captured using a Terasic TRDB-D5M camera and the data are converted to RGB format using the video decoder driver. The converted data are shown in binary format and the greyscale conversion system extracts and processes the data. The processed data are stored in the SDRAM before being sent to a VGA monitor. The camera system and greyscale conversion system were developed using the Altera DE2-70 development platform. The data from the video decoder driver and SDRAM were examined to confirm that the data conversion matched greyscale conversion formulae. The converted data in the SDRAM correctly displayed the greyscale image on a VGA monitor.
Performance analysis of low-complexity welch power spectral density for automatic frequency analyser Teh Yi Jun; Asral Bahari Jambek; Uda Hashim
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.858 KB) | DOI: 10.11591/eei.v8i1.1393

Abstract

The aim of this paper is to investigate the performance of the Low Complexity Welch Power Spectral Density Computation (PSDC). This algorithm is an improvement from Welch PSDC method to reduce the computational complexity of the method. The effect of the sampling rate and the input frequency toward to accuracy of frequency detection is being evaluated. From the experiment results, sampling rate nearest to the twice of the input frequency provides the highest accuracy which achieved 99%. The ability of the algorithm to perform complex signal also has been investigated.
Performance comparison of automatic peak detection for signal analyser Teh Yi Jun; Asral Bahari Jambek; Uda Hashim
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (469.671 KB) | DOI: 10.11591/eei.v8i1.1394

Abstract

The aim of this paper is to propose a new peak detection method for a portable device, which know as modified automatic threshold peak detection (M-ATPD). M-ATPD evolves out of ATPD with a focus on reducing computational time. The proposed method replaces the clustering threshold calculation in ATPD with a standard deviation threshold calculation. M-ATPD reduces computational time by 2 times faster compared to ATPD for control signal and 8.65 times faster compared to ATPD for raw biosignals. Modified ATPD also shows a slight improvement in terms of detection error, with a decrease of about 6.66% to 13.33% in peak detection of noise signals. Modified ATPD successfully fixes the error of peak detection on pulse control signals associated with ATPD.  For raw biosignals, in total M-ATPD achieved 19.41% lower detection error compare to ATPD.
SOC integration for video processing application Chan Boon Cheng; Asral Bahari Jambek
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (572.279 KB) | DOI: 10.11591/eei.v8i1.1396

Abstract

Video processing is an additional system that can improve the functionality of video surveillance. Integration of a simple video processing system into a complete camera system with a field-programmable gate array (FPGA) is an important step for research, to further improve the tracking process. This paper presents the integration of greyscale conversion into a complete camera system using Nios II software build tools for Eclipse. The camera system architecture is designed using the Nios II soft-core embedded processor from Altera. The proposed greyscale conversion system is designed using the C programming language in Eclipse. Parts of the architecture design in the camera system are important if greyscale conversion is to take place in the processing, such as synchronous dynamic random-access memory (SDRAM) and a video decoder driver. The image or video is captured using a Terasic TRDB-D5M camera and the data are converted to RGB format using the video decoder driver. The converted data are shown in binary format and the greyscale conversion system extracts and processes the data. The processed data are stored in the SDRAM before being sent to a VGA monitor. The camera system and greyscale conversion system were developed using the Altera DE2-70 development platform. The data from the video decoder driver and SDRAM were examined to confirm that the data conversion matched greyscale conversion formulae. The converted data in the SDRAM correctly displayed the greyscale image on a VGA monitor.
Performance evaluation of arithmetic coding data compression for internet of things applications Nor Asilah Khairi; Asral Bahari Jambek; Rizalafande Che Ismail
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 2: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i2.pp591-597

Abstract

Wireless Sensor Network (WSN) is known for its autonomous sensors, where it has been found to be useful during the development of Internet of Things (IoT) devices. However, WSN is also known for its limited energy supply and memory space, as it carries small-sized batteries and memory space. Hence, a data compression approach has been introduced in this paper with the purpose of solving this particular issue. This paper focused on the performance of the Arithmetic Coding algorithm. Temperature (Temp), Sea-Level Pressure (Pressure), stride interval (Stride), and heart rate (BPM) were chosen as the dataset in this project. Based on the results, the compression ratio of Temp, Pressure, Stride, and BPM were 0.428, 0.255, 0.217, and 0.159 respectively. From this analysis, BPM produced the best compression ratio. Undeniably, the Arithmetic Coding algorithm is one of the best methods to compress real-world datasets. Hence, by using this approach, it can reduce the usage of energy and memory space.Wireless Sensor Network (WSN) is known for its autonomous sensors, where it has been found to be useful during the development of Internet of Things (IoT) devices. However, WSN is also known for its limited energy supply and memory space, as it carries small-sized batteries and memory space. Hence, a data compression approach has been introduced in this paper with the purpose of solving this particular issue. This paper focused on the performance of the Arithmetic Coding algorithm. Temperature (Temp), Sea-Level Pressure (Pressure), stride interval (Stride), and heart rate (BPM) were chosen as the dataset in this project. Based on the results, the compression ratio of Temp, Pressure, Stride, and BPM were 0.428, 0.255, 0.217, and 0.159 respectively. From this analysis, BPM produced the best compression ratio. Undeniably, the Arithmetic Coding algorithm is one of the best methods to compress real-world datasets. Hence, by using this approach, it can reduce the usage of energy and memory space.