Mohd Nazri A. Karim
Universiti Malaysia Perlis

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Design of Ku-band power divider using Substrate Integrated Waveguide technique Tan Gan Siang; David Paul David Dass; Siti Zuraidah Ibrahim; Mohd Nazri A. Karim; Aliya A. Dewani
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (592.459 KB) | DOI: 10.11591/eei.v8i1.1410

Abstract

A Ku-band Substrate Integrated Waveguide power divider is proposed. In this work, the SIW power divider is designed with T-junction configuration. The SIW technique enables the power divider to have low insertion loss, low cost and features uniplanar circuit. An additional of metallic via hole is added in the center of the junction to improve the return loss performance of the Tjunction SIW power divider. The simulated input return losses at port 1 are better than 27 dB, and features equal power division of about -3.1 dB ±0.4 dB at both output ports across frequency range of 13.5-18 GHz. The SIW power divider is fabricated, and the measurement results show acceptable performances. Since there are some losses contributed by the SMA connector of the fabricated SIW power divider prototype, an additional SIW transmission line is simulated and fabricated to analyze the connector loss.
Design of Ku-band power divider using Substrate Integrated Waveguide technique Tan Gan Siang; David Paul David Dass; Siti Zuraidah Ibrahim; Mohd Nazri A. Karim; Aliya A. Dewani
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (985.053 KB) | DOI: 10.11591/eei.v8i1.1410

Abstract

A Ku-band Substrate Integrated Waveguide power divider is proposed. In this work, the SIW power divider is designed with T-junction configuration. The SIW technique enables the power divider to have low insertion loss, low cost and features uniplanar circuit. An additional of metallic via hole is added in the center of the junction to improve the return loss performance of the T-junction SIW power divider. The simulated input return losses at port 1 are better than 27 dB, and features equal power division of about -3.1 dB ±0.4 dB at both output ports across frequency range of 13.5-18 GHz. The SIW power divider is fabricated, and the measurement results show acceptable performances. Since there are some losses contributed by the SMA connector of the fabricated SIW power divider prototype, an additional SIW transmission line is simulated and fabricated to analyze the connector loss.
Design of Ku-band power divider using Substrate Integrated Waveguide technique Tan Gan Siang; David Paul David Dass; Siti Zuraidah Ibrahim; Mohd Nazri A. Karim; Aliya A. Dewani
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (985.053 KB) | DOI: 10.11591/eei.v8i1.1410

Abstract

A Ku-band Substrate Integrated Waveguide power divider is proposed. In this work, the SIW power divider is designed with T-junction configuration. The SIW technique enables the power divider to have low insertion loss, low cost and features uniplanar circuit. An additional of metallic via hole is added in the center of the junction to improve the return loss performance of the T-junction SIW power divider. The simulated input return losses at port 1 are better than 27 dB, and features equal power division of about -3.1 dB ±0.4 dB at both output ports across frequency range of 13.5-18 GHz. The SIW power divider is fabricated, and the measurement results show acceptable performances. Since there are some losses contributed by the SMA connector of the fabricated SIW power divider prototype, an additional SIW transmission line is simulated and fabricated to analyze the connector loss.
A Ku-Band SIW six-port Tan Gan Siang; Siti Zuraidah Ibrahim; Mohd Nazri A. Karim; Aliya A. Dewani; Mohammad Shahrazel Razalli
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 1: January 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i1.pp273-280

Abstract

This paper shows a compact fully integrated six-port Substrate Integrated Waveguide (SIW) operating at Ku-Band frequency range. The SIW six-port is formed by combining two SIW power dividers and two SIW couplers, having the benefit of no additional termination is required as this topology has no excessive port. To achieve the optimized design of the six-port, both of the key components; power divider and coupler are primarily designed, fabricated, and measured individually. Y-junction topology is employed on the power divider structure to achieve a compact size. In turn, the coupling coefficient of the two output ports of the SIW coupler are improved by shifting the position of a row of several vias located at the side wall center closer to the side wall. The simulated six port performance provides an advantage of wide bandwidth within Ku-Band across 13 to 17 GHz with a return loss better than 12 dB and transmission coefficient of 7±1.5 dB. The simulated and measured results show good agreement thus validating the prototype. The SIW six-port can find its application in designing a six-port.