Darun Kesrarat
Assumption University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Noise resistance territorial intensity-based optical flow using inverse confidential technique on bilateral function Darun Kesrarat; Vorapoj Patanavijit
Bulletin of Electrical Engineering and Informatics Vol 10, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i6.3243

Abstract

This paper presents the use of the inverse confidential technique on bilateral function with the territorial intensity-based optical flow to prove the effectiveness in noise resistance environment. In general, the image’s motion vector is coded by the technique called optical flow where the sequences of the image are used to determine the motion vector. But, the accuracy rate of the motion vector is reduced when the source of image sequences is interfered by noises. This work proved that the inverse confidential technique on bilateral function can increase the percentage of accuracy in the motion vector determination by the territorial intensity-based optical flow under the noisy environment. We performed the testing with several kinds of non-Gaussian noises at several patterns of standard image sequences by analyzing the result of the motion vector in a form of the error vector magnitude (EVM) and compared it with several noise resistance techniques in territorial intensity-based optical flow method.
Experimental analysis of non-Gaussian noise resistance on global method optical flow using bilateral in reverse confidential Darun Kesrarat; Vorapoj Patanavijit
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.2740

Abstract

This paper presents the analytical of non-Gaussian noise resistance with the aid of the use of bilateral in reverse confidential with the optical flow. In particular, optical flow is the sample of the image’s motion from the consecutive images caused by the object’s movement. It is a 2-D vector where every vector is a displacement vector displaying the motion from the first image to the second. When the noise interferes with the image flow, the approximated performance on the vector in optical flow is poor. We ensure greater appropriate noise resistance by applying bilateral in reverse confidential in optical flow in the experiment by concerning the error vector magnitude (EVM). Many noise resistance models of the global method optical flow are using for comparison in our experiment. And many sequenced image data sets where they are interfered with by several types of non-Gaussian noise are used for experimental analysis.
Noise resistance evaluation of spatial-field optical flow using modifying Lorentzian function Darun Kesrarat; Vorapoj Patanavijit
Bulletin of Electrical Engineering and Informatics Vol 11, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i5.3815

Abstract

This paper presents the evaluation of the modifying Lorentzian function on the spatial-field optical flow to examine the validity in the noisy domain of motion estimation. In the routine of the motion estimation, the frame’s motion vector is estimated by the optical flow approach where the flow of the image’s frames is caught to estimate the motion vector. Nevertheless, in the noisy domain, the preciseness of the motion vector is weakened. We operated the measurement along with several non-Gaussian noises standards through several styles of the standard image frame. The determination on error vector magnitude (EVM) was taken into account to consider the preciseness of direction and length of the motion vector (MV) in comparison with various noise resistance techniques in spatial-field optical flow approach. In the achievement results, we found that this modifying Lorentzian norm function added up in the optical flow strengthen the degree of preciseness in the estimation of the spatial-field optical flow approach in the noisy domain.