Sudalaimuthu Thalavaipillai
Hindustan Institute of Technology and Science

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Symptoms based endometriosis prediction using machine learning Visalaxi Sankaravadivel; Sudalaimuthu Thalavaipillai
Bulletin of Electrical Engineering and Informatics Vol 10, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i6.3254

Abstract

Endometriosis a painful disorder that stripes the uterus both inside and outside. Endometriosis can be diagnosed by the medical practitioners with the help of traditional scanning procedures. Laparoscopic surgery is the authentic method for identifying the advanced stages of endometriosis. The statistical approach is a state-of-art method for identifying the various stages of endometriosis using laparoscopic images. The paper focuses on a well-known statistical method known as chi-square and correlation coefficients are implemented for identifying the symptoms that are correlated with various stages of endometriosis. Chi-square analysis performs the association between symptoms and stages of endometriosis. With these analysis, an algorithm was proposed known as endometriosis prediction factor algorithm (EPF). The EPF algorithm predicts the presence of endometriosis if the derived value is greater than 1. From the chi-square analysis, it is identified that mild endometriosis is influenced 34% by menstrual flow, minimal endometriosis is influenced 40% by dysmenorrhea, where moderate endometriosis is influenced 31% by tenderness and deep infiltrating endometriosis is influenced 22% by adnexal mass.
AMIGOS: a robust emotion detection framework through Gaussian ResiNet Bakkialakshmi V. S.; Sudalaimuthu Thalavaipillai
Bulletin of Electrical Engineering and Informatics Vol 11, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i4.3783

Abstract

Affective computing is the study of the deep extraction of emotional impacts that triggers humans for various reasons. Emotions directly reflect on human behaviour. The proposed analysis is inclined towards deep emotion extraction through a novel concept with less computation time. Designing a robust analysis model is focused on here. AMIGOS dataset on affect, and personality modelling is considered here. A novel gaussian ResiNet (GRN) algorithm is evaluated here. Any changes in the emotions of humans are the brainy response given to the actions faced. The features of the given physiological factors are considered for analysis, further with GMM-ResiNet (GRN) a low computational structure is used for classification. The novel gaussian ResiNet (GRN) is created from the given dataset for similar feature validations. The system predicts the correlated relative data from the training set and testing set and achieved the performance metrics using error rate (ER), algorithm computation time (ACT), full computation time (FCT), and accuracy (AUC). novel gaussian ResiNet (GRN) is created and tested with processed data of the AMIGOS dataset. The model created is validated with state-of-art approaches and achieved an accuracy of 92.6%.
Feature based analysis of endometriosis using machine learning Visalaxi Sankaravadivel; Sudalaimuthu Thalavaipillai; Surya Rajeswar; Pon Ramlingam
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 3: March 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i3.pp1700-1707

Abstract

Machine learning is a cutting-edge technology used for predicting and diagnosing various diseases. Various machine learning algorithm facilitates the prediction. The decision tree belongs to learning algorithm that performs both classification and prediction. The decision tree constructs the tree-like to evaluate the best features. The decision tree performs well in the prediction of various diseases. Endometriosis is a recurrence disease that creates an emotional impact in women. Endometriosis is a lump-like structure that appears at several locations in reproductive organs of women. The diagnosis of endometriosis was predicted through scanning procedures and laparoscopic procedures. The symptoms identified from laparoscopic surgery were used as the features for predicting the severity of endometriosis. The symptoms include mass-like structure, tissue size, variation in tissue colour, and blockages in fallopian tubes. The decision tree analyze the features of endometriosis by using two criteria such as entropy and Gini index. The entropy and Gini index construct the tree by identifying the size of tissue as major influencing attributes. The Gini index outperforms well with training accuracy of 84.08% and test accuracy of 84.85.