M. H. F. Rahiman
Universiti Malaysia Perlis

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Hand motion pattern recognition analysis of forearm muscle using MMG signals M. R. Mohamad Ismail; C. K. Lam; K. Sundaraj; M. H. F. Rahiman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (471.491 KB) | DOI: 10.11591/eei.v8i2.1415

Abstract

Surface Mechanomyography (MMG) is the recording of mechanical activity of muscle tissue. MMG measures the mechanical signal (vibration of muscle) that generated from the muscles during contraction or relaxation action. It is widely used in various fields such as medical diagnosis, rehabilitation purpose and engineering applications. The main purpose of this research is to identify the hand gesture movement via VMG sensor (TSD250A) and classify them using Linear Discriminant Analysis (LDA). There are four channels MMG signal placed into adjacent muscles which PL-FCU and ED-ECU. The features used to feed the classifier to determine accuracy are mean absolute value, standard deviation, variance and root mean square. Most of subjects gave similar range of MMG signal of extraction values because of the adjacent muscle. The average accuracy of LDA is approximately 87.50% for the eight subjects. The finding of the result shows, MMG signal of adjacent muscle can affect the classification accuracy of the classifier.
Hand motion pattern recognition analysis of forearm muscle using MMG signals M. R. Mohamad Ismail; C. K. Lam; K. Sundaraj; M. H. F. Rahiman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (471.491 KB) | DOI: 10.11591/eei.v8i2.1415

Abstract

Surface Mechanomyography (MMG) is the recording of mechanical activity of muscle tissue. MMG measures the mechanical signal (vibration of muscle) that generated from the muscles during contraction or relaxation action. It is widely used in various fields such as medical diagnosis, rehabilitation purpose and engineering applications. The main purpose of this research is to identify the hand gesture movement via VMG sensor (TSD250A) and classify them using Linear Discriminant Analysis (LDA). There are four channels MMG signal placed into adjacent muscles which PL-FCU and ED-ECU. The features used to feed the classifier to determine accuracy are mean absolute value, standard deviation, variance and root mean square. Most of subjects gave similar range of MMG signal of extraction values because of the adjacent muscle. The average accuracy of LDA is approximately 87.50% for the eight subjects. The finding of the result shows, MMG signal of adjacent muscle can affect the classification accuracy of the classifier.
Hand motion pattern recognition analysis of forearm muscle using MMG signals M. R. Mohamad Ismail; C. K. Lam; K. Sundaraj; M. H. F. Rahiman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (471.491 KB) | DOI: 10.11591/eei.v8i2.1415

Abstract

Surface Mechanomyography (MMG) is the recording of mechanical activity of muscle tissue. MMG measures the mechanical signal (vibration of muscle) that generated from the muscles during contraction or relaxation action. It is widely used in various fields such as medical diagnosis, rehabilitation purpose and engineering applications. The main purpose of this research is to identify the hand gesture movement via VMG sensor (TSD250A) and classify them using Linear Discriminant Analysis (LDA). There are four channels MMG signal placed into adjacent muscles which PL-FCU and ED-ECU. The features used to feed the classifier to determine accuracy are mean absolute value, standard deviation, variance and root mean square. Most of subjects gave similar range of MMG signal of extraction values because of the adjacent muscle. The average accuracy of LDA is approximately 87.50% for the eight subjects. The finding of the result shows, MMG signal of adjacent muscle can affect the classification accuracy of the classifier.