Masalah sampah di Indonesia masih menjadi momok yang belum teratasi, terutama karena tingginya pertumbuhan penduduk. Sampah anorganik menjadi perhatian utama karena sulit terurai dan mencemari lingkungan untuk waktu yang lama. Oleh karena itu, diperlukan sistem pendeteksi otomatis berbagai jenis sampah anorganik dalam berbagai kondisi, guna mengurangi dampak pencemaran dan memfasilitasi proses daur ulang yang lebih efisien. Penelitian ini menggunakan kecerdasan buatan (deep learning) dengan model YOLOv8 nano untuk mengenali beberapa jenis sampah anorganik. Data yang dipakai berasal dari kamera gawai dan gabungan dataset Kaggle, totalnya ada 2459 data untuk lima jenis sampah. Pembagian datanya 1967 untuk pelatihan, 246 untuk validasi, dan 246 untuk pengujian. Pengujian dilakukan pada gambar yang berisi 1 hingga 12 objek sampah dalam kondisi yang berbeda-beda. Hasilnya menunjukkan akurasi model yang tinggi, dengan nilai mAP50 mencapai 87.1% dan mAP50-95 sebesar 72.1%. Nilai presisi mencapai 86.2% dan recall mencapai 79.1% pada iterasi ke-50, menunjukkan kinerja model yang baik. Model ini juga handal dalam mendeteksi hingga sepuluh objek sampah dalam satu gambar. Namun, kemampuan deteksi menurun ketika objek sampah melebihi sepuluh. Artinya, model masih bisa mengenali objek meski jumlahnya banyak, tetapi akurasi klasifikasinya menurun. Abstract The waste problem in Indonesia remains a persistent issue, especially due to the high population growth. Inorganic waste is a major concern because it is difficult to decompose and contaminates the environment for a long time. Therefore, an automatic detection system for various types of inorganic waste in different conditions is needed to reduce the impact of pollution and facilitate more efficient recycling processes. This study uses artificial intelligence (deep learning) with the YOLOv8 nano model to recognize several types of inorganic waste. The data used comes from mobile phone cameras and a combination of Kaggle datasets, totaling 2,459 data points for five types of waste. The data is divided into 1,967 for training, 246 for validation, and 246 for testing. The testing was conducted on images containing 1 to 12 waste objects in various conditions. The results show a high model accuracy, with an mAP50 value of 87.1% and mAP50-95 of 72.1%. The precision value reaches 86.2%, and the recall reaches 79.1% at the 50th iteration, indicating good model performance. This model is also reliable in detecting up to ten waste objects in a single image. However, the detection ability decreases when the number of waste objects exceeds ten. This means that the model can still recognize objects even when there are many, but its classification accuracy decreases.