Esraa Alaa Mahareek
Al-Azhar University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Simulated annealing for SVM parameters optimization in student’s performance prediction Esraa Alaa Mahareek; Abeer S. Desuky; Habiba Abdullah El-Zhni
Bulletin of Electrical Engineering and Informatics Vol 10, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i3.2855

Abstract

High education is an important and critical part of education all over the world. In last year, the world has been turned increasingly to online education due to the outbreak of the Covid-19 pandemic; therefore, improving this education system became an urgent matter. Online learning systems are a primal environment for acquiring educational data which can be from different sources, especially academic institutions. These data can be mainly used to analyze and extract utilizable information to help in understanding university students’ performance and identifying factors that affect it. To extract some meaningful information from these large volumes of data, academic organizations must mine the data with high accuracy. In this work, three different real datasets were selected, pre-processed, cleaned, and filtered for applying support vector machine (SVM) with multilayer perceptron kernel (MLP kernel) and optimize its parameters using simulated annealing (SA) algorithm to improve the objective function value. While examining the search space, SA has the advantage of escaping from local minima since it offers the chance for accepting the worse neighbor as a solution in a controlled manner. The results show that the designed system can determine the best SVM parameters using SA and therefore presents better model evaluation.