Duc-Duong Nguyen
Hanoi University of Science and Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Improving intrusion detection in SCADA systems using stacking ensemble of tree-based models Duc-Duong Nguyen; Minh-Thuy Le; Thanh-Long Cung
Bulletin of Electrical Engineering and Informatics Vol 11, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i1.3334

Abstract

This paper introduces a stacking ensemble model, which combines three single models, to improve intrusion detection in supervisory control and data acquisition (SCADA) systems. The first layer of the proposed model is the combination of random forest, light boosting gradient machine, and eXtreme gradient boosting models. We use an multilayer perceptron (MLP) network as a meta-classifier of the model. The proposed model is optimized and tested on an international dataset (gas pipeline dataset). The tested results show an accuracy of 99.72% with the f1-score of 99.72% for binary classification tasks (attacked or non-attacked detection). For categorical tasks, the detection rates of almost all attack types are higher than 97.55% (except for denial of service (DoS)-95.17%), with an overall accuracy of 99.62%.