Muhammad Noor Fakhruzzaman
Universitas Airlangga

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Indonesian pharmacy retailer segmentation using recency frequency monetary-location model and ant K-means algorithm Ghea Sekar Palupi; Muhammad Noor Fakhruzzaman
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6132-6139

Abstract

We proposed an approach of retailer segmentation using a hybrid swarm intelligence algorithm and recency frequency monetary (RFM)-location model to develop a tailored marketing strategy for a pharmacy industry distribution company. We used sales data and plug it into MATLAB to implement ant clustering algorithm and K-means, then the results were analyzed using RFM-location model to calculate each clusters’ customer lifetime value (CLV). The algorithm generated 13 clusters of retailers based on provided data with a total of 1,138 retailers. Then, using RFM-location, some clusters were combined due to identical characteristics, the final clusters amounted to 8 clusters with unique characteristics. The findings can inform the decision-making process of the company, especially in prioritizing retailer segments and developing a tailored marketing strategy. We used a hybrid algorithm by leveraging the advantage of swarm intelligence and the power of K-means to cluster the retailers, then we further added value to the generated clusters by analyzing it using RFM-location model and CLV. However, location as a variable may not be relevant in smaller countries or developed countries, because the shipping cost may not be a problem.  
Flagging clickbait in Indonesian online news websites using fine-tuned transformers Muhammad Noor Fakhruzzaman; Sa'idah Zahrotul Jannah; Ratih Ardiati Ningrum; Indah Fahmiyah
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2921-2930

Abstract

Click counts are related to the amount of money that online advertisers paid to news sites. Such business models forced some news sites to employ a dirty trick of click-baiting, i.e., using hyperbolic and interesting words, sometimes unfinished sentences in a headline to purposefully tease the readers. Some Indonesian online news sites also joined the party of clickbait, which indirectly degrade other established news sites' credibility. A neural network with a pre-trained language model multilingual bidirectional encoder representations from transformers (BERT) that acted as an embedding layer is then combined with a 100 node-hidden layer and topped with a sigmoid classifier was trained to detect clickbait headlines. With a total of 6,632 headlines as a training dataset, the classifier performed remarkably well. Evaluated with 5-fold cross-validation, it has an accuracy score of 0.914, an F1-score of 0.914, a precision score of 0.916, and a receiver operating characteristic-area under curve (ROC-AUC) of 0.92. The usage of multilingual BERT in the Indonesian text classification task was tested and is possible to be enhanced further. Future possibilities, societal impact, and limitations of clickbait detection are discussed.