Cut Mutia
Syiah Kuala University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improving the Performance of CBIR on Islamic Women Apparels Using Normalized PHOG Cut Mutia; Fitri Arnia; Rusdha Muharar
Bulletin of Electrical Engineering and Informatics Vol 6, No 3: September 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (860.666 KB) | DOI: 10.11591/eei.v6i3.657

Abstract

The designs of Islamic women apparels is dynamically changing, which can be shown by emerging of online shops selling clothing with fast updates of newest models. Traditionally, buying the clothes online can be done by querying the keywords to the retrieval system. The approach has a drawback that the keywords cannot describe the clothes designs precisely. Therefore, a searching based on content–known as content-based image retrieval (CBIR)–is required. One of the features used in CBIR is the shape. This article presents a new normalization approach to the Pyramid Histogram of Oriented Gradients (PHOG) as a mean for shape feature extraction of women Islamic clothing in a retrieval system. We refer to the proposed approach as normalized PHOG (NPHOG). The Euclidean distance measured the similarity of the clothing. The performance of the system was evaluated by using 340 clothing images, comprised of four clothing categories, 85 images for each category: blouse-pants, long dress, outerwear, and tunic. The recall and precision parameters measured the retrieval performance; the Histogram of Oriented Gradients (HOG) and PHOG were the methods for comparison. The experiments showed that NPHOG improved the HOG and PHOG performance in three clothing categories.
Improving the Performance of CBIR on Islamic Women Apparels Using Normalized PHOG Cut Mutia; Fitri Arnia; Rusdha Muharar
Bulletin of Electrical Engineering and Informatics Vol 6, No 3: September 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (860.666 KB) | DOI: 10.11591/eei.v6i3.657

Abstract

The designs of Islamic women apparels is dynamically changing, which can be shown by emerging of online shops selling clothing with fast updates of newest models. Traditionally, buying the clothes online can be done by querying the keywords to the retrieval system. The approach has a drawback that the keywords cannot describe the clothes designs precisely. Therefore, a searching based on content–known as content-based image retrieval (CBIR)–is required. One of the features used in CBIR is the shape. This article presents a new normalization approach to the Pyramid Histogram of Oriented Gradients (PHOG) as a mean for shape feature extraction of women Islamic clothing in a retrieval system. We refer to the proposed approach as normalized PHOG (NPHOG). The Euclidean distance measured the similarity of the clothing. The performance of the system was evaluated by using 340 clothing images, comprised of four clothing categories, 85 images for each category: blouse-pants, long dress, outerwear, and tunic. The recall and precision parameters measured the retrieval performance; the Histogram of Oriented Gradients (HOG) and PHOG were the methods for comparison. The experiments showed that NPHOG improved the HOG and PHOG performance in three clothing categories.