Enas Wahab Abood
University of Basrah

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Audio steganography with enhanced LSB method for securing encrypted text with bit cycling Enas Wahab Abood; Abdulhssein M. Abdullah; Mustafa A. Al Sibahe; Zaid Ameen Abduljabbar; Vincent Omollo Nyangaresi; Saad Ahmad Ali Kalafy; Mudhafar Jalil Jassim Ghrabta
Bulletin of Electrical Engineering and Informatics Vol 11, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i1.3279

Abstract

Data security pressing issue, particularly in terms of ensuring secure and reliable data transfer over a network. Encryption and seganography play a fundamental role in the task of securing data exchanging. In this article, both steganography and cryptography were combined to produce a powerful hybrid securing stego-system. Firstly, a text message is encrypted with a new method using a bits cycling operation to give a cipher text. In the second stage, an enhanced LSB method is used to hide the text bits randomly in an audio file of a wav format. This hybrid method can provide effectually secure data. Peak signal-to-noise ratio (PSNR), mean squared error (MSE) and structural similarity (SSIM) were employed to evaluate the performance of the proposed system. A PSNR was in range (60-65) dB with the enhanced least significant bit (LSB) and the SSIM had been invested to calculate the signal quality, which scored 0.999. The experimental results demonstrated that our algorithm is highly effective in securing data and the capacity size of the secured text. Furthermore, the time consumption was considerably low, at less than 0.3 seconds.
Securing audio transmission based on encoding and steganography Enas Wahab Abood; Zaid Ameen Abduljabbar; Mustafa A. Al Sibahee; Mohammed Abdulridha Hussain; Zaid Alaa Hussien
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i3.pp1777-1786

Abstract

One of the things that must be considered when establishing a data exchange connection is to make that communication confidential and hide the file’s features when the snoopers intercept it. In this work, transformation (encoding) and steganography techniques are invested to produce an efficient system to secure communication for an audio signal by producing an efficient method to transform the signal into a red–green–blue (RGB) image. Subsequently, this image is hidden in a cover audio file by using the least significant bit (LSB) method in the spatial and transform domains using discrete wavelet transform. The audio files of the message and the cover are in *.wav format. The experimental results showed the success of the transformation in concealing audio secret messages, as well the remarkability of the stego signal quality in both techniques. A peak signal-to-noise ratio peak signal-to-noise ratio (PSNR) scored (20-26) dB with wavelet and (81-112) dB with LSB for cover file size 4.96 MB and structural similarity index metric structural similarity index metric (SSIM) has been used to measure the signal quality which gave 1 with LSB while wavelet was (0.9-1), which is satisfactory in all experimented signals with low time consumption. This work also used these metrics to compare the implementation of LSB and WAV.
Fully automated model on breast cancer classification using deep learning classifiers Mudhafar Jalil Jassim Ghrabat; Zaid Alaa Hussien; Mustafa S. Khalefa; Zaid Ameen Abduljabbar; Vincent Omollo Nyangaresi; Mustafa A. Al Sibahee; Enas Wahab Abood
Indonesian Journal of Electrical Engineering and Computer Science Vol 28, No 1: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v28.i1.pp183-191

Abstract

Deep learning models on the same database have varied accuracy ratings; as such, additional parameters, such as pre-processing, data augmentation and transfer learning, can influence the models’ capacity to obtain higher accuracy. In this paper, a fully automated model is designed using deep learning algorithm to capture images from patients and pre-process, segment and classify the intensity of cancer spread. In the first pre-processing step, pectoral muscles are removed from the input images, which are then downsized. The removal of pectoral muscles after identification may become crucial in classification systems. Finally, the pectoral musclesaredeleted from the picture by using an area expanding segmentation. All mammograms are downsized to reduce processing time. Each stage of the fully automated model uses an optimisation approach to obtain highaccuracy results at respective stages. Simulation is conducted to test the efficacy of the model against state-of-art models, and the proposed fully automated model is thoroughly investigated. For a more accurate comparison, we include the model in our analysis. In a nutshell, this work offers a wealth of information as well as review and discussion of the experimental conditions used by studies on classifying breast cancer images.
Provably secure and efficient audio compression based on compressive sensing Enas Wahab Abood; Zaid Alaa Hussien; Haifaa Assy Kawi; Zaid Ameen Abduljabbar; Vincent Omollo Nyangaresi; Junchao Ma; Mustafa A. Al Sibahee; Saad Ahmad Ali Kalafy
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp335-346

Abstract

The advancement of systems with the capacity to compress audio signals and simultaneously secure is a highly attractive research subject. This is because of the need to enhance storage usage and speed up the transmission of data, as well as securing the transmission of sensitive signals over limited and insecure communication channels. Thus, many researchers have studied and produced different systems, either to compress or encrypt audio data using different algorithms and methods, all of which suffer from certain issues including high time consumption or complex calculations. This paper proposes a compressing sensing-based system that compresses audio signals and simultaneously provides an encryption system. The audio signal is segmented into small matrices of samples and then multiplied by a non-square sensing matrix generated by a Gaussian random generator. The reconstruction process is carried out by solving a linear system using the pseudoinverse of Moore-Penrose. The statistical analysis results obtaining from implementing different types and sizes of audio signals prove that the proposed system succeeds in compressing the audio signals with a ratio reaching 28% of real size and reconstructing the signal with a correlation metric between 0.98 and 0.99. It also scores very good results in the normalized mean square error (MSE), peak signal-to-noise ratio metrics (PSNR), and the structural similarity index (SSIM), as well as giving the signal a high level of security.