Mustafa Amer Obaid
University of Anbar

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Pre-convoluted neural networks for fashion classification Mustafa Amer Obaid; Wesam M. Jasim
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.2750

Abstract

In this work, concept of the fashion-MNIST images classification constructed on convolutional neural networks is discussed. Whereas, 28×28 grayscale images of 70,000 fashion products from 10 classes, with 7,000 images per category, are in the fashion-MNIST dataset. There are 60,000 images in the training set and 10,000 images in the evaluation set. The data has been initially pre-processed for resizing and reducing the noise. Then, this data is normalized for ensuring that all the data are on the same scale and this usually improves the performance. After normalizing the data, it is augmented where one image will be in three forms of output. The first output image is obtained by rotating the actual one; the second output image is obtained as acute angle image; and the third is obtained as tilt image. The new data set is of 180,000 images for training phase and 30,000 images for the testing phase. Finally, data is sent to training process as input for training model of the pre-convolution network. The pre-convolution neural network with the five layered convoluted deep neural network and do the training with the augmented data, The performance of the proposed system shows 94% accuracy where it was 93% in VGG16 and 92% in AlexNetnetworks.