Anis Nikmatul Kasanah
Karang rejo Garum Blitar

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN Anis Nikmatul Kasanah; Muladi Muladi; Utomo Pujianto
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 3 No 2 (2019): Agustus 2019
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.942 KB) | DOI: 10.29207/resti.v3i2.945

Abstract

Amount of information in the form of online news needs to be balanced with the ability of readers to sort or classify subjective or objective news. So that a special system is needed that can be used for online news objectivity classification so that it can help readers to pick up subjective or objective news. This research proposes the development of techniques in machine learning to help sort out news objectivity automatically based on the content of the news. The algorithm proposed is K-Nearest Neighbor (KNN) algorithm. News samples obtained from kompas.com by scrapping occur imbalance classes where the number of objective news and subjective news are not balanced. So that it can affect the performance of the classification algorithm. One technique to overcome the imbalance class is to apply the Synthetic Minority Over-sampling Technique (SMOTE) technique.. SMOTE is the generation of minority data as much as the majority data. This study compares the performance of KNN algorithm without SMOTE and the performance of KNN algorithm with SMOTE. Based on the results of the study by applying a variety of neighboring k values, namely 1, 3, 5, 7 and 9, it was found that the application of SMOTE could improve the accuracy of the KNN algorithm at values ​​k = 1 and k = 3 with an average increase of 3.36. At values ​​k 5, 7 and 9 the algorithm experiences an average decrease in accuracy of 6.67.