Zaini Dalimus
Electrical Engineering Department Andalas University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake Dalimus, Zaini; Hussain, Khallid; Day, Andrew J.
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 7, No 1 (2016)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (680.26 KB) | DOI: 10.14203/j.mev.2016.v7.49-56

Abstract

In mixed-mode braking applications, the electric motor / generator (M/G) and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP) drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.
Braking System Modeling and Brake Temperature Response to Repeated Cycle Dalimus, Zaini
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 2 (2014)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2155.695 KB) | DOI: 10.14203/j.mev.2014.v5.123-128

Abstract

Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.