Wahyu Dwianto
Research Center for Biomaterials, Indonesian Institute of Sciences

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analysis on Chemical Components of Woods to Predict Ethanol Production Values Wahyu Dwianto; Fitria Fitria; Danang Sudarwoko Adi; Rumi Kaida; Takahisa Hayashi
Wood Research Journal Vol 7, No 1 (2016): Wood Research Journal
Publisher : Masyarakat Peneliti Kayu Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51850/wrj.2016.7.1.18-27

Abstract

This paper deals with analysis on chemical components of woods to predict ethanol production values. The aim is expected to give a reliable value of ethanol production, eliminating the effort needed to directly measure this ethanol production from each wood species. Since the data of wood chemical components is widely available, this result will be valuable in determining a potential use of a wood species as bio-ethanol feedstock. Saccharification and fermentation processes by enzymatic hydrolysis were applied for xylems derived from49 branch trees of Cibodas, 32 branch trees of Purwodadi, and 19 branch trees of Bali Botanical Gardens in Indonesia. Three major wood components were analysed, i.e. cellulose, hemicellulose, and lignin. The results show varied relationships between ethanol production and chemical components of wood. The content of cellulose in wood was not exactly related to its ethanol production. This trend was also occurred for the relationship between hemicellulose and ethanol production. However, lignin content in woods gave an expected trend where the less lignin content, the higher the ethanol production.Furthermore, the ratios of cellulose-hemicelluloses and cellulose-lignin have been quantified. The result showed that the celullose-lignin ratio can potentially be used to predict the value of ethanol production which is expressed by linear regression y = 0.0616x + 0.8341; where R² = 0.4127, x = ethanol production and y = cellulose-lignin ratio. Gymnostoma sumatranum with cellulose content of 43.8% and lignin content of 24.1% (celullose-lignin ratio of 1.8) has actual ethanol production of 12.1 mg/100mg wood meal, compared to 15.7 mg/100mg wood meal resulted from above equation. Therefore, by using its cellulose-lignin ratio, the woods having high ethanol production can be screened from literatures.
Analysis on Chemical Components of Woods to Predict Ethanol Production Values Wahyu Dwianto; Fitria Fitria; Danang Sudarwoko Adi; Rumi Kaida; Takahisa Hayashi
Wood Research Journal Vol 7, No 1 (2016): Wood Research Journal
Publisher : Masyarakat Peneliti Kayu Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51850/wrj.2016.7.1.18-27

Abstract

This paper deals with analysis on chemical components of woods to predict ethanol production values. The aim is expected to give a reliable value of ethanol production, eliminating the effort needed to directly measure this ethanol production from each wood species. Since the data of wood chemical components is widely available, this result will be valuable in determining a potential use of a wood species as bio-ethanol feedstock. Saccharification and fermentation processes by enzymatic hydrolysis were applied for xylems derived from49 branch trees of Cibodas, 32 branch trees of Purwodadi, and 19 branch trees of Bali Botanical Gardens in Indonesia. Three major wood components were analysed, i.e. cellulose, hemicellulose, and lignin. The results show varied relationships between ethanol production and chemical components of wood. The content of cellulose in wood was not exactly related to its ethanol production. This trend was also occurred for the relationship between hemicellulose and ethanol production. However, lignin content in woods gave an expected trend where the less lignin content, the higher the ethanol production.Furthermore, the ratios of cellulose-hemicelluloses and cellulose-lignin have been quantified. The result showed that the celullose-lignin ratio can potentially be used to predict the value of ethanol production which is expressed by linear regression y = 0.0616x + 0.8341; where R² = 0.4127, x = ethanol production and y = cellulose-lignin ratio. Gymnostoma sumatranum with cellulose content of 43.8% and lignin content of 24.1% (celullose-lignin ratio of 1.8) has actual ethanol production of 12.1 mg/100mg wood meal, compared to 15.7 mg/100mg wood meal resulted from above equation. Therefore, by using its cellulose-lignin ratio, the woods having high ethanol production can be screened from literatures.
FIXATION PROCESS OF LAMINATED BAMBOO COMPRESSION FROM CURVED CROSS-SECTION SLATS Teguh Darmawan; Adik Bahanawan; Danang S. Adi; Wahyu Dwianto; Naresworo Nugroho
Indonesian Journal of Forestry Research Vol 8, No 2 (2021): Indonesian Journal of Forestry Research
Publisher : Secretariat of Agency for Standardization of Environment and Forestry Instruments

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/ijfr.2021.8.2.159-171

Abstract

Removing the outer part of bamboo for manufacturing flat bamboo lamination has disadvantage on the density of the product. The purpose of this experiment was to investigate the fixation of compressed bamboo from curved cross-section slats. The compression of bamboo slats using densification technique was aimed for uniform density. Furthermore, steam treatments were conducted to fix the deformation. The compressed bamboo slats revealed that the density of the samples at the bottom parts increased from 0.40–0.56 g/cm3 to 0.89–1.05 g/cm3 after pressing with a compression level between 46.98–63.97%, while the samples in the middle parts increased from 0.70–0.83 g/cm3 to 1.02–1.18 g/cm3 with the compression level of 32.92–41.50%. These results were slightly higher than that of the upper parts, which was between 0.91–0.98 g/cm3. The recovery of set decreased and the weight loss increased with  increasing  temperature and steam treatment time. Fixation of compressive deformation could be achieved at 160°C within 60 minutes. The bottom parts of samples experienced a slightly greater weight loss compared to the middle parts, i.e. 8.38% and 7.49%, respectively. The anatomical structure of bamboo tended to deform during densification process. Furthermore, the steam treatments affected  the colour of densified bamboo which became darker. From this experiment, it can be concluded that the manufacture of laminated bamboo from bamboo slats can be uniformed in strength by equalizing the density at the bottom and middle with the upper parts through the densification technique. However, further research should be conducted to know the delamination and shear strength of the bamboo lamination.