Endang Ripandi
Universitas BSI

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimasi Klasifikasi Jenis Hutan Menggunakan Deep Learning Berbasis Optimize Selection Rizki Tri Prasetio; Endang Ripandi
Jurnal Informatika Vol 6, No 1 (2019): April 2019
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (530.141 KB) | DOI: 10.31294/ji.v6i1.5176

Abstract

AbstrakHutan adalah paru-paru dunia, maka menjaga kelestarian hutan merupakan suatu keharusan. Menurut WWF (2015) bahwa lebih dari 170 hektar hutan di seluruh dunia akan menghilang secara pesat hingga tahun 2030 mendatang. Brian Johnson, Ryutaro Tateishi, dan Zhixiao Xie (2010) melakukan penelitian untuk mengklasifikasikan jenis populasi tumbuhan hutan pada hutan Ibraki, Jepang. Algoritma SVM (Support Vector Machine) dan MLP (Multy Layer Perceptron) diterapkan untuk mengklasifikasikan jenis populasi tumbuhan hutan di hutan Ibraki dengan hasil akurasi 85.9%. Hasil Penelitian Brian Johnson dkk, diberi nama Forest Type Mapping Datasets.  Hasil akurasi yang diperoleh dari penerapan algoritma SVM dan MLP masih belum mencapai hasil akurasi yang optimal dan masih mungkin untuk ditingkatkan. Untuk dapat meningkatkan hasil akurasi yang optimal terhadap klasifikasi jenis populasi tumbuhan hutan pada Forest Type Mapping Datasets, maka pada penelitian ini diusulkan untuk menerapkan algoritma optimasi fitur Optimize Selection pada algoritma Deep Learning. Hasil penelitian menunjukan bahwa metode yang diusulkan membuat peningkatan akurasi yang signifikan. Nilai akurasi klasifikasi pada jenis populasi tumbuhan hutan yang dihasilkan algoritma Deep Learning dengan optimasi fitur Optimize Selection berhasil meningkat menjadi  96.46%.