Claim Missing Document
Check
Articles

Found 2 Documents
Search

Studi Numerik Centrifugal Fan Tipe Impeller Backward dengan Variasi Putaran Fan Lohdy Diana; Achmad Setiyawan; Achmad Bahrul Ulum; Arrad Ghani Safitra; Muhammad Nabiel Ariansyah
JOURNAL OF MECHANICAL ENGINEERING MANUFACTURES MATERIALS AND ENERGY Vol 5, No 2 (2021): EDISI DESEMBER
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jmemme.v5i2.5181

Abstract

The primary air fan functions as a primary air producer which is used as air to transport coal powder from the pulverizer to the burner to be burned in the boiler furnace. This study aims to obtain the effect of the rotation variation of fan to  fluid flow characteristics such as the distribution of total pressure, the dynamic pressure, the pressure static contours, velocity distribution, and the fan optimal efficiency. This study was numerical study with simulated a backward impeller type centrifugal fan in a two-dimension model using Fluid Computational software with the multiple reference frame method with the variation of fan rotation. Based on the visualization of the pressure contour and velocity distribution, it could be concluded that there was a volute phenomenon, this was indicated that the greater the volume area in the volute is the greater the total pressure value too. Based on the visualization of the outlet velocity distribution at the position of -0,8531m to -1,01301m, it was found that the velocity is close to the value of 0 m/s2. It showed that the minimum velocity in the area due to the volute tongue radius occurs a flow collision and it impacted the velocity in the area decreased up to V=0. From the simulation results, it was found that the greater the fan rotation value was the greater the efficiency value too. It would be verified by the actual operating data of the centrifugal fan with a minimum rotation range value of 1194 rpm to a maximum of 1468 rpm
Numerical Analysis of the Effect of Serrated Fin to the Heat Transfer in the Condenser Lohdy Diana; Febrian Kusumawardani; Wahyu Nur Fadilah; Muhammad Nabiel Ariansyah; Muhammad Farid Irfianto
FLYWHEEL : Jurnal Teknik Mesin Untirta Volume 7, Issue 2, October 2021
Publisher : Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36055/fwl.v0i0.12034

Abstract

Condenser is one of the most important components in the power generation industry, which serves to condense the output steam from low-pressure turbine for boiler feed water. Several ways can be used to improve the performance of the condenser, one way is to add a serrated fin on the outer tube to lower the temperature of the outlet. A serrated fin that is used has 0° and 30 segments per period, which is installed on the tube with the diameter of the outer of 0.03175 m. This research was carried out by using the numerical method of CFD 2D to compare the performance of the heat transfer on the tube without and with a serrated fin on the variation speed of 7 m/s and 9 m/s. By inputting the parameters of the inlet of 350.15 °K, the resulting value of the outlet serrated fin tube temperature which is lower than the annular tube (tube without the serrated fin). On the simulation of the serrated fin tube with an inlet velocity of 7 m/s resulting outlet temperature of 343.2 °K, lower than in the simulation on the annular tube which produces the outlet temperature of 344.53 °K.