Faris Nafiah
International Islamic University Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pulsed Eddy Current Imaging of Inclined Surface Cracks Faris Nafiah; Ali Sophian
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 5, No 4: December 2017
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v5i4.359

Abstract

Inclined fatigue cracks can potentially cause severe damage to metallic structures as they affect larger region in the tested structure compared to crack perpendicular to the sample surface. The abilitiy to detect and characterize such cracks is paramount in non-destructive testing (NDT). Pulsed eddy current testing (PEC) is known to offer a broadband of excitation frequencies, which in conjuction with C-scan imaging, may offer discrimination of inclination angles of cracks. Finite element modelling (FEM) was carried out to study the effects of different crack inclination angles, while experimental results were used to verify the FEM results. Selection of both time and frequency domain features for C-scan image construction was also presented, where C-scan images of peak value and amplitude at 200 Hz were shown to be potentially capable in determining different inclination angles. Nevertheless, between these two signal teatures, the amplitude at 200 Hz was found to be more effective in the discriminataion of inclined cracks.
Modelling of scanning pulsed eddy current testing of normal and slanted surface cracks Faris Nafiah; Ali Sophian; Md Raisuddin Khan; Ilham Mukriz Zainal Abidin
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 3: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i3.pp1297-1302

Abstract

Thanks to its wide bandwidth, pulsed eddy current (PEC) has attracted researchers of various backgrounds in the attempt to exploit its benefits in Non-destructive Testing (NDT). The ability of modelling PEC problems would be a precious tool in this attempt as it would help improve the understanding of the interaction between the transient magnetic field and the specimen, among others. In this work, a Finite Element Modelling (FEM) has been developed and experimental test data have been gathered for its validation. The investigated cases were simulated surface cracks of different sizes and angles. The study involved looking at time-domain PEC signals at different spatial distances from the cracks’ faces, which would particularly be useful for modelling scanning PEC probes. The obtained results show a good agreement between the FEM and experiment, demonstrating that the modelling technique can be used with confidence for solving similar problems.