Hanjaya Mandala
Department of Electrical Engineering, National Taiwan Normal University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A Fast and Accurate Object Detection Algorithm on Humanoid Marathon Robot Eko Rudiawan Jamzuri; Hanjaya Mandala; Jacky Baltes
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 1: March 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (957.107 KB) | DOI: 10.52549/ijeei.v8i1.1960

Abstract

This paper introduces a fast and accurate object detection algorithm based on a convolutional neural network for humanoid marathon robot applications. The algorithm is capable of operating on a low-performance CPU without relying on the GPU or hardware accelerator. A new region proposal algorithm, based on color segmentation, is proposed to extract a region containing a potential object. As a classifier, the convolution neural network is used to predict object classes from the proposed region. In the training phase, the classifier is trained with an Adam optimizer to minimize the loss function, using datasets collected from humanoid marathon competitions and diversified using image augmentation. An NVIDIA GTX 1070 training machine, with 500 batch images per epoch and a learning rate of 0.001, required 12 seconds to minimize the loss value below 0.0374. In the accuracy evaluation, the proposed method successfully recognizes and localizes three classes of marker with a training accuracy of 99.929%, validation accuracy of 99.924%, and test accuracy of 98.821%. As a real-time benchmark, the algorithm achieves 41.13 FPS while running on a robot computer with Intel i3-5010U CPU @ 2.10GHz.