Claim Missing Document
Check
Articles

Found 4 Documents
Search

Automated Learning of Hungarian Morphology for Inflection Generation and Morphological Analysis Gabor Szabo; Laszlo Kovacs
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.2545

Abstract

The automated learning of morphological features of highly agglutinative languages is an important research area for both machine learning and computational linguistics. In this paper we present a novel morphology model that can solve the inflection generation and morphological analysis problems, managing all the affix types of the target language. The proposed model can be taught using (word, lemma, morphosyntactic tags) triples. From this training data, it can deduce word pairs for each affix type of the target language, and learn the transformation rules of these affix types using our previously published, lower-level morphology model called ASTRA. Since ASTRA can only handle a single affix type, a separate model instance is built for every affix type of the target language. Besides learning the transformation rules of all the necessary affix types, the proposed model also calculates the conditional probabilities of the affix type chains using relative frequencies, and stores the valid lemmas and their parts of speech. With these pieces of information, it can generate the inflected form of input lemmas based on a set of affix types, and analyze input inflected word forms. For evaluation, we use Hungarian data sets and compare the accuracy of the proposed model with that of state of the art morphology models published by SIGMORPHON, including the Helsinki (2016), UF and UTNII (2017), Hamburg, IITBHU and MSU (2018) models. The test results show that using a training data set consisting of up to 100 thousand random training items, our proposed model outperforms all the other examined models, reaching an accuracy of 98% in case of random input words that were not part of the training data. Using the high-resource data sets for the Hungarian language published by SIGMORPHON, the proposed model achieves an accuracy of about 95-98%.
Development of ontology-based model to support learning process in LMS Hussein Ali Ahmed Ghanim; László Kovács
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 1: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i1.pp507-518

Abstract

E-Learning is an important support mechanism for educational systems to increase the efficiency of the education process including students and teachers. The current e-learning systems typically lack the level of metacognitive awareness, adaptive tutoring, and time management skills and have not always met the expectations of the learners as required. In this study, we introduce a novel ontological model for the learning process in the e-learning domain. In the framework, we have built a domain ontology that represents knowledge of the learning, the outcome domain ontology covers the whole learning process. We focused on the learning process ontology model conceptualizing knowledge constructions, such as learning courses, and we present the created course and learning process ontology in detail. In this work, we considered three layers of learning process. The top layer defines a general framework of learning process, conceptual model layer, defines the framework of the actual process of the learning process and course ontology model contains the knowledge unit of the learning process. The prototype ontology is constructed in protégé and managed by Java web ontology language-application programming interface (OWL-API). As a result, our model can solve the problems of current e-tutor systems. Also, it can be used for different domain in e-tutor systems. It can reach the characteristics of standardization, reusability, flexibility, and open knowledge. By applying this model, we can avoid applying isolated databases. The constructed ontology can be used in the future to control adaptive intelligent e-tutor frameworks.
Survey on attribute and concept reduction methods in formal concept analysis Mohammed Alwersh; László Kovács
Indonesian Journal of Electrical Engineering and Computer Science Vol 30, No 1: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v30.i1.pp366-387

Abstract

Formal concept analysis (FCA) is now widely recognized as a useful approach for extracting, representing, and analyzing knowledge in various domains. The high computational cost of knowledge processing and the difficulty of visualizing the lattice are two key challenges in practical FCA implementations. Moreover, assessing the finalized built-up lattice may be problematic due to the enormous number of formal concepts and the complexity of their connections. The challenge of constructing concept lattices of adequate size and structure to convey high-importance context features remains a significant FCA aim. In the literature, various strategies for concept lattice reduction have been presented. In this work, we suggest a categorization of reduction methods for concept lattice based on three main categories: context pre-processing, non-essential distinctions elimination, and concept filtration, whereby using FCA-based analysis, the most important methods in the literature are analyzed and compared based on six pillars: the preliminary step of the reduction process, domain expert, changing the original data structure, final concept lattice, quality of reduction, and category of reduction method.
Automatic question generation using extended dependency parsing Walelign Tewabe Sewunetie; Laszlo Kovacs
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 2: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i2.pp1108-1115

Abstract

The importance of automatic question generation (AQG) systems in education is recognized for automating tasks and providing adaptive assessments. Recent research focuses on improving quality with advanced neural networks and machine learning techniques. However, selecting the appropriate target sentences and concepts remains challenging in AQG systems. To address this problem, the authors created a novel system that combined sentence structure analysis, dependency parsing approach, and named entity recognition techniques to select the relevant target words from the given sentence. The main goal of this paper is to develop an AQG system using syntactic and semantic sentence structure analysis. Evaluation using manual and automatic metrics shows good performance on simple and short sentences, with an overall score of 3.67 out of 5.0. As the field of AQG continues to evolve rapidly, future research should focus on developing more advanced models that can generate a wider range of questions, especially for complex sentence structures.