Nidhal K. El Abbadi
University of Kufa

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Hybrid Deep Neural Network for Facial Expressions Recognition Wijdan Rashid Abdulhussien; Nidhal K. El Abbadi; Abdul M. Gaber
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 9, No 4: December 2021
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v9i4.3425

Abstract

Facial expressions are critical indicators of human emotions where recognizing facial expressions has captured the attention of many academics, and recognition of expressions in natural situations remains a challenge due to differences in head position, occlusion, and illumination. Several studies have focused on recognizing emotions from frontal images only, while in this paper wild images from the FER2013 dataset have been used to make a more generalizing model with the existence of its challenges, it is among the most difficult datasets that only got 65.5 % accuracy human-level. This paper proposed a model for recognizing facial expressions using pre-trained deep convolutional neural networks and the technique of transfer learning. this hybrid model used a combination of two pre-trained deep convolutional neural networks, training the model in multiple cases for more efficiency to categorize the facial expressions into seven classes. The results show that the best accuracy of the suggested models is 74.39%  for the hybrid model, and 73.33% for Fine-tuned the single EfficientNetB0 model, while the highest accuracy for previous methods was 73.28%. Thus, the hybrid and single models outperform other state of art classification methods without using any additional, the hybrid and single models ranked in the first and second position among these methods. Also, The hybrid model has even outperformed the second-highest in accuracy method which used extra data. The incorrectly labeled images in the dataset unfairly reduce accuracy but our best model recognized their actual classes correctly.
Automatic gray images colorization based on lab color space Nidhal K. El Abbadi; Eman Saleem Razaq
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i3.pp1501-1509

Abstract

The colorization aim to transform a black and white image to a color image. This is a very hard  issue and usually requiring manual intervention by the user to produce high-quality images free of artifact. The public problem of inserting gradients color to a gray image has no accurate method. The proposed method is fully automatic method. We suggested to use reference color image to help transfer colors from reference image to gray image.  The reference image converted to  Lab color space, while the gray scale image normalized according to the lightness channel L. the gray image concatenate with both a, and b channels before converting to RGB image. The results were promised compared with other methods.