Claim Missing Document
Check
Articles

Found 4 Documents
Search

IMPLEMENTASI HYBRID-BASED RECOMMENDATION DIDALAM SISTEM REKOMENDASI PENCARIAN PEKERJAAN BERBASIS WEB Andre Hasudungan Lubis
Jurnal Elektro dan Telkomunikasi Vol 4 No 2 (2017): Jurnal Elektro dan Telkomunikasi
Publisher : UNIVERSITAS PEMBANGUNAN PANCA BUDI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (712.571 KB)

Abstract

Aktivitas utama yang dilakukan sehari – hari seorang individu untuk mencari uang adalah dengan cara bekerja. Mencari pekerjaan yang sesuai dengan latar belakang pendidikan yang kita tekuni tidaklah mudah. Banyak individu yang tidak mengetahui kemampuan diri mereka sendiri dan keterbatasan informasi lowongan pekerjaan juga menjadi hambatan bagi pelamar yang ingin mencari pekerjaan. Karena itu, diperlukan satu ‘alat bantu’ yang dapat memberi rekomendasi bidang pekerjaan apa yang sesuai dengan belakang pendidikan yang bersangkutan. Metode hybrid approach adalah dengan menggabungkan teknik collaborative-filtering (algoritma decision tree) dan content-based (algoritma nearest neighbor). Algoritma decision tree digunakan untuk pengklasifikasian bidang pekerjaan sedangkan untuk rekomendasi pekerjaan,digunakan algoritma nearest neighbor. Pada nearest neighbor digunakan rumus similarity untuk menghitung kedekatan antara pelamar dan lowongan pekerjaan berdasarkan pencocokan bobot san atribut yang ada. Output yang dihasilkan dari sistem ini berupa daftar rekomendasi pekerjaan yg sesuai dengan latar belakang pendidikan pelamar.
The Implementation of Simple Additive Weighting (SAW) Method to Selection of Plastic Raw Materials Andre Hasudungan Lubis; Zulfikar Sembiring; Indah Sari Gaurifa
Budapest International Research and Critics Institute-Journal (BIRCI-Journal) Vol 5, No 2 (2022): Budapest International Research and Critics Institute May
Publisher : Budapest International Research and Critics University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33258/birci.v5i2.5660

Abstract

Plastic is a polymer material widely used as a food and beverage packaging material due to the lightness and easy to use. The selection of quality plastic raw materials from industries engaged in plastic production are greatly affects the products produced. However, there are some mistakes occurred due to the selection process is carried out subjectively without any consideration, resulting in material losses for the company. The difficulty in determining superior plastic raw materials is one of them. The study attempts to select the best plastic raw materials using the Simple Additive Weighting (SAW) method. The research use five criteria for types of raw materials, namely: price, quality, production speed, plastic waste, location. Then, the plastic seeds brands used in this study are: Poly-max, El-pro, Titan, Polytan, and Trilene. The result of the study shows various result and present which seeds is the best to be used in the company.
Penentuan Microcontroller Unit (MCU) Terbaik berdasarkan Pembobotan Objektif Andre Hasudungan Lubis; Solly Aryza; sutrisno
SNASTIKOM Vol. 1 No. 01 (2022): SEMINAR NASIONAL TEKNOLOGI INFORMASI & KOMUNIKASI (SNASTIKOM) 2022
Publisher : Unit Pengelola Jurnal Universitas Harapan Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A Microcontroller Unit (MCU) plays an important role in technology developments. It used as the data input receiver, processing, and presenting data output tallied to the program built. Various MCUs are provided inmarket with numerous types and architectures of them. Hence, a decision model is necessity to aid the select the best between MCUs. The WASPAS Method was employed along with the CRITIC method as the objective weighting for the criteria. The criteria used are the instruction set, memory architecture, total of I/O pins, power consumption, price, RAM size, and processing speed. The result pointed out that ESP32 selected as the best MCU between the others. This study provides recommendations to prospective buyers or users to decide the best MCU
An Application Of Double Exponential Method For Forecasting Drug Sales Stock Zulhikmah Marpaung; Andre Hasudungan Lubis
Jurnal Scientia Vol. 13 No. 04 (2024): Education and Sosial science, September-December 2024
Publisher : Sean Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Drug Stock Forecasting Application using a web-based Double Exponential Smoothing method is designed to optimize drug inventory management, particularly at Romora Drugstore. Modern computing technology plays a crucial role in supporting the operational activities of various business sectors, providing quick, precise, and accurate information. This efficiency is especially important in drugstores, where computers assist employees in managing tasks, such as drug inventory. Romora Drugstore, like many others, faces fluctuating monthly drug demands, making accurate forecasting essential to avoid stockouts or overstock situations. To address this challenge, this research proposes the Double Exponential Smoothing method as a forecasting tool. This method predicts future stock requirements based on historical data, enabling better management of drug supplies. By analysed past sales transactions, the application can forecast future demand, helping the drugstore ensure optimal stock levels, prevent financial losses, and enhance overall operational efficiency.