Adhi Prahara
Department of Informatics Faculty of Industrial Technology Universitas Ahmad Dahlan

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Parallelization of Partitioning Around Medoids (PAM) in K-Medoids Clustering on GPU Adhi Prahara; Dewi Pramudi Ismi; Ahmad Azhari
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p40-49

Abstract

K-medoids clustering is categorized as partitional clustering. K-medoids offers better result when dealing with outliers and arbitrary distance metric also in the situation when the mean or median does not exist within data. However, k-medoids suffers a high computational complexity. Partitioning Around Medoids (PAM) has been developed to improve k-medoids clustering, consists of build and swap steps and uses the entire dataset to find the best potential medoids. Thus, PAM produces better medoids than other algorithms. This research proposes the parallelization of PAM in k-medoids clustering on GPU to reduce computational time at the swap step of PAM. The parallelization scheme utilizes shared memory, reduction algorithm, and optimization of the thread block configuration to maximize the occupancy. Based on the experiment result, the proposed parallelized PAM k-medoids is faster than CPU and Matlab implementation and efficient for large dataset.