Claim Missing Document
Check
Articles

Found 4 Documents
Search

Financial Contagion and Good Corporate Governance on Bank Companies Performance in Indonesian Stock Exchange Sugiyanto Sugiyanto; Tukiyat Tukiyat
EAJ (Economic and Accounting Journal) Vol 4, No 3 (2021): EAJ (Economic and Accounting Journal)
Publisher : S1 Accounting Department, Faculty of Economic, Universitas Pamulang.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/eaj.v4i3.y2021.p164-178

Abstract

This study aims to examine the effect of fianancial contagion and good corporate governance on company performance of banks company listed on  Indonesia Stock Company. Corporate governance is measured using the number of independent commissioners, frequency of board meetings, and attendance at board meetings. This study has two dependent variables, namely market performance as measured by Price Earning Ratio (PER) and operational performance as measured by return on equity (ROE). The analysis method used is multiple regression models with two dependent variables. The results showed that the contagion effect had a positive influence on the company's PER performance but did not have an effect on the company's ROE performance. Meanwhile, corporate governance through the board of directors' meeting is able to have an influence on ROE performance but not on PER. This shows that when there is a domino effect from another country it will have an influence on share prices in the market.
Analisis Sentimen Vaksinasi Covid-19 Pada Twitter Menggunakan Naive Bayes Classifier Dengan Feature Selection Chi-Squared Statistic dan Particle Swarm Optimization Ristasari Dwi Septiana; Agung Budi Susanto; Tukiyat Tukiyat
Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan) Vol. 5 No. 1 (2021): Volume V - Nomor 1 - September 2021
Publisher : Teknik Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47970/siskom-kb.v5i1.228

Abstract

Tingginya penyebaran Covid-19 semakin berdampak pada bidang kesehatan, ekonomi, bahkan bidang pendidikan di Indonesia, sehingga pemerintah Indonesia melakukan tindakan vaksinasi Covid-19 guna menekan tingkat penyebaran Covid-19 di Indonesia. Namun hal tersebut dinilai kotroversial sehingga menarik perhatian masyarakat untuk memberikan opini di berbagai media seperti media sosial twitter. Sehingga membutuhkan analisa sentimen masyarakat terhadap upaya pemerintah pada tindakan vaksinasi Covid-19 untuk mencapai hasil prediksi dengan nilai akurasi paling optimal. Proses crawling secara otomatis menggunakan tools Rapidminer akan mengambil data tweets yang mengandung 5 (lima) kata kunci, yaitu “Vaksin Sinovac”, “Vaksin Astrazeneca”, “Vaksin Moderna”, “Vaksin Merah Putih”, dan “Vaksinasi Covid-19”. Dataset tweets didapatkan dari tanggal 4 Agustus 2021 sampai 12 Agustus 2021. Dataset diperoleh sejumlah 2060 tweets dan diberi label secara manual didapatkan jumlah tweet sebanyak 1193 sentimen positif, 73 negatif, dan 794 netral. Data tersebut dianalisa dengan menggunakan Metode Feature Selection Chi-Squared Statistic dan Particle Swarm Optimization (PSO) untuk mengurangi atribut yang kurang relevan pada saat proses klasifikasi dengan algoritma Naive Bayes Classifier (NBC). Hasil pengujian menunjukan bahwa Algoritma Naive Bayes Classifier (NBC) tanpa Feature Selection mendapatkan nilai akurasi 63,69%. Hasil penelitian menunjukkan bahwa Algoritma Naive Bayes Classifier (NBC) dengan Feature Selection Chi-Squared Statistic mempunyai tingkat akurasi 69,13%. Sedangkan hasil pengujian algoritma Naive Bayes Classifier (NBC) dengan Particle Swarm Optimization mempunyai tingkat akurasi 66,02%. Dengan demikian hasil seleksi fitur Chi-Squared Statistic mendapatkan nilai akurasi yang lebih baik jika dibandingkan dengan Particle Swarm Optimization untuk proses klasifikasi algoritma Naive Bayes Classifier (NBC) dengan selisih akurasi 3,11%.
Pemodelan Prakiraan Tingkat Inflasi Di Indonesia Dengan ARIMA Tukiyat Tukiyat
Jurnal Informatika Universitas Pamulang Vol 7, No 2 (2022): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v7i2.17676

Abstract

Penelitin bertujuan untuk mengetahui nilai inflasi bulanan yang terjadi di Indonesia. Penelitian menggunakan data sekunder yang sumber dari BPS dan Bank Indonesia. Sampel penelitian diambil mulai periode Januari 2010 sampai April 2021. Metode analisis data dengan model ARIMA.  Dalam proses analisis data dibagi menjadi dua bagian yaitu data training (Januari 2010 – Desember 2020) sebagai data bangkitan untuk membangun model dan data testing (Januari – April 2021) untuk menguji hasil prediksi dari model. Dari analisis data diperoleh hasil pemodelan ARIMA (3,1,2). Uji validasi model dengan parameter RMSE (Root Mean Square Error)  sebesar 1.076, nilai MAE (Mean Absolute Error) sebesar 0.696, dan MAPE (Mean Absolute Percentage Error) sebesar 220.68.  Uji validasi hasil prediksi dengan uji rata-rata dan varian menunjukkan bahwa hasil pengujian dari kedua metode tersebut mempunyai nilai probabilitas yang lebih besar dari 0,05 sehingga dapat disimpulkan tidak terdapat perbedaan yang signifikan nilai aktual dengan nilai prediksinya. Mengingat model ini mempunyai keterbatasan, maka disarankan untuk meningkatkan akurasi model prediksi dapat dilakukan dengan pendekatan metode lain, misalnya naive bayes atau metode jaringan saraf tiruan (artificial neural network).
Pemodelan Prakiraan Tingkat Inflasi Di Indonesia Dengan ARIMA Tukiyat Tukiyat
Jurnal Informatika Universitas Pamulang Vol 7, No 2 (2022): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v7i2.17676

Abstract

Penelitin bertujuan untuk mengetahui nilai inflasi bulanan yang terjadi di Indonesia. Penelitian menggunakan data sekunder yang sumber dari BPS dan Bank Indonesia. Sampel penelitian diambil mulai periode Januari 2010 sampai April 2021. Metode analisis data dengan model ARIMA.  Dalam proses analisis data dibagi menjadi dua bagian yaitu data training (Januari 2010 – Desember 2020) sebagai data bangkitan untuk membangun model dan data testing (Januari – April 2021) untuk menguji hasil prediksi dari model. Dari analisis data diperoleh hasil pemodelan ARIMA (3,1,2). Uji validasi model dengan parameter RMSE (Root Mean Square Error)  sebesar 1.076, nilai MAE (Mean Absolute Error) sebesar 0.696, dan MAPE (Mean Absolute Percentage Error) sebesar 220.68.  Uji validasi hasil prediksi dengan uji rata-rata dan varian menunjukkan bahwa hasil pengujian dari kedua metode tersebut mempunyai nilai probabilitas yang lebih besar dari 0,05 sehingga dapat disimpulkan tidak terdapat perbedaan yang signifikan nilai aktual dengan nilai prediksinya. Mengingat model ini mempunyai keterbatasan, maka disarankan untuk meningkatkan akurasi model prediksi dapat dilakukan dengan pendekatan metode lain, misalnya naive bayes atau metode jaringan saraf tiruan (artificial neural network).