Mustikasari Mustikasari
Fakultas Sains Dan Teknologi Universitas Islam Negeri Alauddin Makassar

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS CLUSTERING TEKS TANGGAPAN MASYARAKAT DI TWITTER TERHADAP PEMBATASAN SOSIAL BERSKALA BESAR MENGGUNAKAN ALGORITMA K-MEANS Muhammad Nur Akbar; Darmatasia Darmatasia; Mustikasari Mustikasari; Muh Syahwal
Jurnal INSYPRO (Information System and Processing) Vol 6 No 1 (2021)
Publisher : Prodi Sistem Informasi UIN Alauddin

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (609.636 KB) | DOI: 10.24252/insypro.v6i1.23325

Abstract

Virus corona (COVID-19) ditetapkan sebagai pandemi oleh WHO (World Health Organization atau Badan Kesehatan Dunia) karena penyebarannya yang terus meningkat dan telah mencapai sebagian besar negara di dunia, termasuk Indonesia. Setiap negara dituntut dapat lebih agresif dalam mengambil tindakan pencegahan dan perawatan. Pemerintah Indonesia sendiri mengeluarkan kebijakan berupa wajib masker, jam malam, serta PSBB (Pembatasan Sosial Berskala Besar) guna menekan laju menyebaran COVID-19.  Namun kebijakan tersebut menuai tanggapan  pro dan kontra dari masyarakat khususnya melalui media sosial, di satu sisi PSBB dianggap mampu menekan laju penyebaran COVID-19 namun di sisi lain PSBB dianggap akan memperburuk kondisi perekonomian masyarakat, khususnya golongan menengah bawah. Penelitian ini bertujuan untuk mengelompokkan tanggapan masyarakat mengenai PSBB di twitter ke dalam beberapa cluster, tanggapan yang berada dalam satu cluster yang sama dianggap memiliki topik atau karakteristik pembahasan yang serupa dan sebaliknya, sehingga dapat memberi insight tambahan pada pihak pemerintah dalam mengevaluasi kebijakannya. Algoritma K-Means digunakan untuk mengelompokkan tanggapan yang memiliki kesamaan karakteristik sebab terbukti memiliki tingkat akurasi yang tinggi dengan waktu eksekusi yang relatif cepat karena bersifat linear. Penelitian ini menghasilkan 4 cluster berbeda dengan mengunakan metode Elbow dalam penentuan jumlah K pada algoritma K-Means dan nilai SSE (Sum of Square Error) sebagai parameter evaluasinya.   
Penambangan Pengklasifiksi Fuzzy dengan Multiobjective Evolutionary Fuzzy Classifier Nur Salman; Mustikasari Mustikasari; Muhammad Nur Akbar
Journal Software, Hardware and Information Technology Vol 2 No 1 (2022)
Publisher : Jurusan Sistem Informasi Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/shift.v2i1.24

Abstract

Classification is one of the key issues in the field of data mining and knowledge discovery. This paper implements a method of constructing a fuzzy rule mining classifier, which is extended in the context of classification. There are three stages of this approach: fuzzy rule set extraction, second; a linguistic labeling process that assigns a linguistic label to each fuzzy set. Owing to many attributes in the database, the feature selection process is also carried out, reducing the complexity to build the final classifier. Third: incorporate strategies to avoid rule redundancy and conflict into process mining. We applied the application Multiobjective Evolutionary Fuzzy Classifier (MOFC), which produced a classifier with satisfactory classification accuracy compared to other classifiers such as C4.5. In addition, in terms of classification based on association rules, MOFC can filter the large of rules and be proven to be able to build compact fuzzy models while maintaining a very good level of accuracy and producing a much smaller set of rules. We examine the performance of fuzzy rule classifiers through computational experiments on three benchmark data sets in the UCI machine learning repository.