Dian Sa’adillah Maylawati
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisis Perbandingan Algoritma FP-Growth dan CP-Tree untuk Data Teks Dian Sa’adillah Maylawati
Jurnal Algoritma Vol 15 No 1 (2018): Jurnal Algoritma
Publisher : Institut Teknologi Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (845.353 KB) | DOI: 10.33364/algoritma/v.15-1.1

Abstract

Frequent Pattern Growth (FP-Growth) dan Compact Pattern Tree (CP-Tree) adalah algoritma Frequent Itemset Mining (FIM) yang menghasilkan frequent itemset dari transaksi database. Frequent itemset dapat digunakan sebagai representasi terstruktur untuk data teks yang merupakan data tidak terstruktur atau semi terstruktur. CP-Tree adalah algoritma FIM yang dikembangkan dari algoritma FP-Growth. Namun, CP-Tree melakukan proses data secara inkremental sedangkan FP-Growth non-inkremental. Artikel ini membahas analisis terhadap algoritma FP-Growth dan CP-Tree dalam menghasilkan representasi terstruktur dari data teks. Berdasarkan hasil analisis dan evaluasi terhadap algoritma FP-Growth CP-Tree diperoleh bahwa frequent itemset yang dihasilkan dari representasi pohon kedua algoritma tersebut sama. Secara proses algoritma FP-Growth lebih sederhana dibandingkan algoritma CP-Tree. Namun, algoritma CP-Tree lebih fleksibel terhadap penambahan transaksi baru dibandingkan algoritma FP-Growth. Hal ini dikarenakan CP-Tree tidak mengulang dari awal untuk proses scanning data dan membuat struktur pohon seperti FP-Growth apabila ada data transaksi baru.
Analisis Perbandingan Algoritma FP-Growth dan CP-Tree untuk Data Teks Dian Sa’adillah Maylawati
Jurnal Algoritma Vol 15 No 1 (2018): Jurnal Algoritma
Publisher : Institut Teknologi Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33364/algoritma/v.15-1.1

Abstract

Frequent Pattern Growth (FP-Growth) dan Compact Pattern Tree (CP-Tree) adalah algoritma Frequent Itemset Mining (FIM) yang menghasilkan frequent itemset dari transaksi database. Frequent itemset dapat digunakan sebagai representasi terstruktur untuk data teks yang merupakan data tidak terstruktur atau semi terstruktur. CP-Tree adalah algoritma FIM yang dikembangkan dari algoritma FP-Growth. Namun, CP-Tree melakukan proses data secara inkremental sedangkan FP-Growth non-inkremental. Artikel ini membahas analisis terhadap algoritma FP-Growth dan CP-Tree dalam menghasilkan representasi terstruktur dari data teks. Berdasarkan hasil analisis dan evaluasi terhadap algoritma FP-Growth CP-Tree diperoleh bahwa frequent itemset yang dihasilkan dari representasi pohon kedua algoritma tersebut sama. Secara proses algoritma FP-Growth lebih sederhana dibandingkan algoritma CP-Tree. Namun, algoritma CP-Tree lebih fleksibel terhadap penambahan transaksi baru dibandingkan algoritma FP-Growth. Hal ini dikarenakan CP-Tree tidak mengulang dari awal untuk proses scanning data dan membuat struktur pohon seperti FP-Growth apabila ada data transaksi baru.
Analisis Perbandingan Algoritma FP-Growth dan CP-Tree untuk Data Teks Dian Sa’adillah Maylawati
Jurnal Algoritma Vol 15 No 1 (2018): Jurnal Algoritma
Publisher : Institut Teknologi Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (845.353 KB) | DOI: 10.33364/algoritma/v.15-1.1

Abstract

Frequent Pattern Growth (FP-Growth) dan Compact Pattern Tree (CP-Tree) adalah algoritma Frequent Itemset Mining (FIM) yang menghasilkan frequent itemset dari transaksi database. Frequent itemset dapat digunakan sebagai representasi terstruktur untuk data teks yang merupakan data tidak terstruktur atau semi terstruktur. CP-Tree adalah algoritma FIM yang dikembangkan dari algoritma FP-Growth. Namun, CP-Tree melakukan proses data secara inkremental sedangkan FP-Growth non-inkremental. Artikel ini membahas analisis terhadap algoritma FP-Growth dan CP-Tree dalam menghasilkan representasi terstruktur dari data teks. Berdasarkan hasil analisis dan evaluasi terhadap algoritma FP-Growth CP-Tree diperoleh bahwa frequent itemset yang dihasilkan dari representasi pohon kedua algoritma tersebut sama. Secara proses algoritma FP-Growth lebih sederhana dibandingkan algoritma CP-Tree. Namun, algoritma CP-Tree lebih fleksibel terhadap penambahan transaksi baru dibandingkan algoritma FP-Growth. Hal ini dikarenakan CP-Tree tidak mengulang dari awal untuk proses scanning data dan membuat struktur pohon seperti FP-Growth apabila ada data transaksi baru.