Yohannes Sardjono
Center of Science and Technology of Accelerator; National Nuclear Energy Agency

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

Optimization of a Beam Shaping Assembly Design for Boron Neutron Capture Cancer Therapy Facility Based on 30 MeV Cyclotron I Made Ardana; Kusminarto Kusminarto; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 3 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1528.697 KB) | DOI: 10.24246/ijpna.v1i3.128-137

Abstract

A series of simulations has been carried out using a Monte Carlo N Particle X code to find out the final composition and configuration of a neutron Beam Shaping Assembly (BSA)  to moderate the fast neutron flux which is generated from the thick disk-type beryllium target. The final configuration for neutron BSA design included 35 cm lead as reflector, 39 cm alumina as moderator, 8.2 cm lithium fluoride as fast neutron filter and 0.5 cm boron carbide as thermal neutron filter. Bismuth, lead fluoride, and lead were chosen as the aperture, reflector, and gamma shielding, respectively. The disk-type of beryllium target is 19 cm in diameter with 0.5 cm thickness which is covered by copper plate to hold the water pressured coolant. A higher yield of neutron production requires a higher intensity of proton beams, which generate much heats and causes the target material to melt. Therefore, it is useful to consider the temperature distribution on the target material with flowing water coolant by means of computer modeling while designing the target. ANSYS-Fluent code will be used to estimate the thermal transfer and heat calculation in a solid target during beam irradiation. Epithermal neutron flux in the suggested design were 1,03x109 n/cm2 s, with almost all IAEA parameters for BNCT BSA design has been satisfied.
The Voxel Mice Model of MCNPX for Simulation In Vivo Test BNCT Agung Prastowo; Yohannes Sardjono; Widarto Widarto
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 3 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (724.401 KB) | DOI: 10.24246/ijpna.v1i3.151-156

Abstract

A study of voxel mice model of MCNPX has been done for in vivo test Boron Neutron Capture Therapy (BNCT). Mathematical and parameters were used to construct the stylized Mice model phantom. The geometry was modified into simulation software MCNPX (Monte Carlo N-Particle eXtended) simulation input. The result of mice stylized model phantom has been showed Figure 3.
Analysis of Safety and Health of Radiation Officer at Pilot Plant BNCT Yuliana Dian N; Soeparmi Soeparmi; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 2 No 1 (2017)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (398.965 KB) | DOI: 10.24246/ijpna.v2i1.42-46

Abstract

Radiation is emission energy which derived from the process of transformation of atoms or nuclei unstable. The emission energy was emitted by a hoarse radiation, can cause changes in physical, chemical and biological material in its path so that the radiation worker should give special attention to health and safety during operate the installation using radiation. Limits opportunities for stochastic effects occur, or the risk resulting from the use of radiation that can be accepted by the public, and workers and prevent the occurrence of deterministic result of radiation harm to the individual. Equivalent dose of radiation received by workers or the public should not be beyond Dose Limit Value (NBD). This also applies to the radiation workers who operate tools for cancer therapy method using boron or Boron Neutron Capture Therapy (BNCT). BNCT is a method of new cancer therapies that are being developed, which combines methods of chemotherapy and radiotherapy. BNCT method utilizing 10B or boron compounds are likely to capture neutrons in thermal energy, which is produced by high - Linear Energy Transfer (LET). Medical examinations for radiation workers should be done regularly and follow the general principles of treatment work, namely the examination before work and after work. Threshold limit radiation exposure was 0.2 to 0.5 Sv. When a person is exposed to radiation overdose, the investigation dosage needs to be done specifically include biological dosimetry.
Conceptual Design of Collimator at Boron Neutron Capture Therapy Facility with 30 MeV Cyclotron and Target 9Be as Neutron Generator Using Monte Carlo N-Particle Extended Simulator Prayoga Isyan; Andang Widi Harto; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 2 No 1 (2017)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (556.269 KB) | DOI: 10.24246/ijpna.v2i1.47-53

Abstract

The optimization of collimator has been studied which resulted epithermal neutron beam for Boron Neutron Capture Therapy (BNCT) using Monte Carlo N Particle Extended (MCNPX). Cyclotron 30 MeV and 9Be target is used as a neutron generator. The design criteria were based on recommendation from IAEA. Mcnpx calculations indicated by using 25 cm and 40 cm thickness of PbF2 as reflector and back reflector, 15 cm thickness of TiF3 as first moderator, 35 cm thickness of AlF3 as second moderator, 25 cm thickness of 60Ni as neutron filter, 2 cm thickness of Bi as gamma filter, and aperture with 20 cm of diameter size, an epithermal neutron beam with an intensity  1.21 × 109 n.cm-2.s-1, fast neutron and gamma doses per epithermal neutron of 7.04 × 10-13  Gy.cm2.n-1 and 1.61 × 10-13 Gy.cm2.n-1, minimum thermal neutron per epithermal neutron ratio of 0.043, and maximum directionality of 0.58, respectively could be produced. The results have not passed all the IAEA’s criteria in fast neutron component and directionality.
An Optimization Design of Collimator in The Thermal Column of Kartini Reactor For BNCT M. Ibnu Khaldun; Andang Widi Harto; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 2 No 2 (2017)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (751.797 KB) | DOI: 10.24246/ijpna.v2i2.54-64

Abstract

Studies were carried out to design a collimator which results in epithermal neutron beam for in vivo experiment of Boron Neutron Capture Therapy (BNCT) at the Kartini Research Reactor by means of Monte Carlo N-Particle (MCNP) codes. Reactor within 100 kW of thermal power was used as the neutron source. All materials used were varied in size, according to the value of mean free path for each material. MCNP simulations indicated that by using 6 cm thick of Natural Nickel as collimator wall, 65 cm thick of Al as moderator, 3 cm thick of Ni-60 as filter, 6 cm thick of Bi as γ-ray shielding, 3.5 cm thick of Li2CO3-polyethilene, with 2 cm aperture diameter. Epithermal neutron beam with maximum flux of 6.60 x 108n.cm-2.s-1 could be produced. The beam has minimum fast neutron and γ-ray components of, respectively, 1.82 x 10-13Gy.cm2.n-1 and 1.70 x 10-13 Gy.cm2.n-1, minimum thermal neutron per epithermal neutron ratio of 0.041, and maximum directionality of 2,12. It did not fully pass the IAEA’s criteria, since the epithermal neutron flux was below the recommended value, 1.0 x 109 n.cm-2.s-1. Nonetheless, it was still usable with epithermal neutron flux exceeding 5.0 x 108 n.cm-2.s-1. it is still feasible for BNCT in vivo experiment.
Analysis of Radiation Effects on Workers and Environment Pilot Plant Boron Neutron Capture Therapy (BNCT) Nur Endah Sari; Yohannes Sardjono; Andang Widi Harto
Indonesian Journal of Physics and Nuclear Applications Vol 2 No 2 (2017)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.904 KB) | DOI: 10.24246/ijpna.v2i2.75-82

Abstract

BNCT is a new method in nuclear technology. The aim of BNCT application is to reduce human risk which used to kills cell targeting characteristic. The impact of using this technology should be considered before it is applied, among the effects of radiation on workers and the surrounding environment BNCT pilot plant. A research on modeling of BNCT pilot plant used a collimator for a 30 MeV cyclotron neutron sources which had been designed from the past research. Radiation shielding modeling for treatment room used MCNPX software. The radiation shielding was concrete baryte on each side that includes coated borated polyethylene 2 cm thick and it is featured with a sliding door with dimensions 220 × 87 × 200 cm coated with stainless steels 2 cm thick. Results obtained value equivalent dose rate of neutron and gamma of each 41.5 µSv.h-1 and 2.05 µSv.h-1. Effects of radiation received by workers in the form of deterministic effects did not have a significant are impact.
A Conceptual Design Optimization of Collimator With 181Ta as Neutron Source for Boron Neutron Capture Therapy Based Cyclotron Using Computer Simulation Program Monte Carlo N Particle Extended Jans P B Siburian; Andang Widi Harto; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 2 No 2 (2017)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (949.26 KB) | DOI: 10.24246/ijpna.v2i2.83-90

Abstract

The optimization of collimator with 30 MeV cyclotron as neutron source and 181Ta as its proton target. cyclotron assumed work at 30 MeV power with 1 mA and 30 kW operation condition. Criteria of design based on IAEA’s recommendation. Using MCNPX as simulator, the result indicated that with using 181Ta as target material with 0.55 cm thickness and 19 cm diameter, 25 cm and 45 cm PbF2 as reflector and back reflector, 30 cm 32S as a moderator, 20 cm 60Ni as fast neutron filter, 2 cm 209Bi as gamma filter, 1 cm 6Li2 CO3- polyethylenes as thermal neutron filter, and 23 cm diameter of aperture, an epithermal neutron beam with intensity 4.37 x 109 n.cm-2.s-1, fast neutron and gamma doses per epithermal neutron of 1.86 x 10-16 Gy.cm2.n-1 and 1.93 x 10-13Gy.cm2.n-1, minimum thermal neutron per epithermal neutron ratio of 0.003, and maximum directionality 0,728, respectively could be produced. The results have passed all the IAEA’s criteria.
Internal Dose Analysis for Radiation Worker in Cancer Therapy Based on Boron Neutron Capture Therapy with Neutron Source Cyclotron 30 MeV Using Monte Carlo N Particle Extended Simulator Aulia Setyo Wicaksono; Andang Widi Harto; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 2 No 2 (2017)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (720.824 KB) | DOI: 10.24246/ijpna.v2i2.91-100

Abstract

Based Studies were carried out to analyze internal dose for radiation worker at Boron Neutron Capture Therapy (BNCT) facility base on Cyclotron 30 MeV with BSA and room that actually design before. This internal dose analyze include interaction between neutron and air. The air contains N2 (72%), O2 (20%), Ar (0.93%), CO2, Neon, Kripton, Xenon, Helium and Methane. That internal dose to the worker should be bellow limit dose for radiation worker amount of 20 mSv/years. From the particle that are present in the air, only Nitrogen and Argon can change into radioactive element. Nitrogen-14 activated to Carbon-14, Nitrogen-15 activated to Nitrogen-16, and Argon-40 activated to Argon-41. Calculation using tally facility in Monte Carlo N Particle Version Extended (MCNPX) program for calculated flux Neutron in the air 3,16x107 Neutron/cm2s. room design in cancer facility have a measurement of length 200 cm, width 200 cm and high 166,40 cm. flux neutron can be used to calculated the reaction rate which is 80,1x10-2 reaction/cm3s for carbon-14 and 8,75x10-5 reaction/cm3s. Internal dose exposed to the radiation worker is 9.08E-9 µSv.