Muhamad Soleh
Faculty of Computer Science, Universitas Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

CHANGE DETECTION IN MULTI-TEMPORAL IMAGES USING MULTISTAGE CLUSTERING FOR DISASTER RECOVERY PLANNING Muhamad Soleh; Aniati Murni Arymurthy; Sesa Wiguna
Jurnal Ilmu Komputer dan Informasi Vol 11, No 2 (2018): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (547.427 KB) | DOI: 10.21609/jiki.v11i2.623

Abstract

Change detection analysis on multi-temporal images using various methods have been developed by many researchers in the field of spatial data analysis and image processing. Change detection analysis has many benefit for real world applications such as medical image analysis, valuable material detector, satellite image analysis, disaster recovery planning, and many others. Indonesia is one of the most country that encounter natural disaster. The most memorable disaster was happened in December 26, 2004. Change detection is one of the important part management planning for natural disaster recovery. This article present the fast and accurate result of change detection on multi-temporal images using multistage clustering. There are three main step for change detection in this article, the first step is to find the image difference of two multi-temporal images between the time before disaster and after disaster using operation log ratio between those images. The second step is clustering the difference image using Fuzzy C means divided into three classes. Change, unchanged, and intermediate change region. Afterword the last step is cluster the change map from fuzzy C means clustering using k means clustering, divided into two classes. Change and unchanged region. Both clustering’s based on Euclidian distance.
MULTI OBJECT DETECTION AND TRACKING USING OPTICAL FLOW DENSITY – HUNGARIAN KALMAN FILTER (OFD - HKF) ALGORITHM FOR VEHICLE COUNTING Muhamad Soleh; Grafika Jati; Muhammad Hafizhuddin Hilman
Jurnal Ilmu Komputer dan Informasi Vol 11, No 1 (2018): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (490.037 KB) | DOI: 10.21609/jiki.v11i1.581

Abstract

Intelligent Transportation Systems (ITS) is one of the most developing research topic along with growing advance technology and digital information. The benefits of research topic on ITS are to address some problems related to traffic conditions. Vehicle detection and tracking is one of the main step to realize the benefits of ITS. There are several problems related to vehicles detection and tracking. The appearance of shadow, illumination change, challenging weather, motion blur and dynamic background such a big challenges issue in vehicles detection and tracking. Vehicles detection in this paper using the Optical Flow Density algorithm by utilizing the gradient of object displacement on video frames. Gradient image feature and HSV color space on Optical flow density guarantee the object detection in illumination change and challenging weather for more robust accuracy. Hungarian Kalman filter algorithm used for vehicle tracking. Vehicle tracking used to solve miss detection problems caused by motion blur and dynamic background. Hungarian kalman filter combine the recursive state estimation and optimal solution assignment. The future positon estimation makes the vehicles detected although miss detection occurance on vehicles. Vehicles counting used single line counting after the vehicles pass that line. The average accuracy for each process of vehicles detection, tracking, and counting were 93.6%, 88.2% and 88.2% respectively.