Tri Bowo Indrato
Department of Medical Electronics Engineering Technology

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

A Low-Cost Transcutaneous Electrical Nerve Stimulation Measuring Device Using Frequency-to-Voltage and Current-to-Voltage Alfita Kurniawati; Torib Hamzah; Tri Bowo Indrato
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v2i2.5

Abstract

The use of transcutaneous electrical nerve stimulation (TENS) therapeutic devices to reduce the complexity of the patients continuing can cause an increase in the performance of the tool. The purpose of this study is to design a tool to calibrate TENS. The contribution of this study is the ease of users when performing TENS calibration because it can display the shape of the signal, the frequency value in units of Hz, as well as the current value in units of mA directly. To match the frequency and current according to the position of the red electrode cable, it must be higher than the position of the black electrode cable. The frequency-to-voltage that is changed then entered is converted into a voltage to be processed using Arduino. Then also with the current-to-voltage, which changes the inrush current and then is converted into a voltage to be processed using Arduino. The results showed that the frequency values ​​in all settings had an average error of 0.018, while the average error of the current in all settings was 0.25. At the frequency, a measurement obtained highest uncertainty value of UA is 1.6, UB is 0, and the highest U95 is 6.88 while in the current measurement obtained, the highest uncertainty value of UA is 0.19, UB is 0, and highest U95 is 0.392. The results of this study can be applied to the field of calibration, specifically the TENS therapy instrument calibration.
Utilization of Power Setting in Monopolar Electrosurgery Unit With Additional Blend Modes Muhammad Roni Setiawan; Tri Bowo Indrato; Triana Rahmawati
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 3 (2020): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i3.4

Abstract

Electrosurgery unit has the purpose of damaging certain body tissues by heating the tissue. In this study there are several modes and also power selection. The contribution of this research is to design the power management and also the addition of several modes for the surgical process. Electrosurgery Unit involves the use of IC CMOS 4069 as a frequency generator. The frequency output is set at 250 KHz and then passed on to the pulse regulator circuit and controlled by using Arduino and then forwarded to the inverter circuit which functions to increase the voltage and output in the form of power. Modules are calibrated using ESU Analyzer. This module is equipped with a selection of LOW, MEDIUM, and HIGH power. And also there are some additional modes including Blend 1 and Blend 2. After the measurement is carried out, the voltage values ​​obtained at the setting of low, medium high, on the inverter input with a value on Blend 1 mode low 80 V with an error of 0.84%, Medium 90 V with error 0.84%, High 104 V with an error of 0.81%, in Blend 2 mode low 84 V with an error of 0.83%, Medium 86 V with a error of 0.85%, High 105 V with an error of 0.81%, the Cutting mode is low 162 V with an error of 2.88%, medium 172 V with an error of 3.03%, High 192 V with an error of 2.86%. The measurement shows an error of less than 1% for Blend 1 and Blend 2 modes while cutting is less than 3%. The results of this study can be implemented in order to minimize errors due to lack of power settings and mode selection during surgery.
Utilization of Power Setting in Mono-polar Electrosurgery Unit With Additional Blend Modes Muhammad Roni Setiawan; Tri Bowo Indrato; Triana Rahmawati; Bedjo Utomo
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i2.7

Abstract

Electrosurgery unit has the purpose of damaging certain body tissues by heating the tissue. In this study there are several modes and also power selection. The contribution of this research is to design the power management and also the addition of several modes for the surgical process. Electrosurgery Unit involves the use of IC CMOS 4069 as a frequency generator. The frequency output is set at 250 KHz and then passed on to the pulse regulator circuit and controlled by using Arduino and then forwarded to the inverter circuit which functions to increase the voltage and output in the form of power. Modules are calibrated using ESU Analyzer. This module is equipped with a selection of LOW, MEDIUM, and HIGH power. And also there are some additional modes including Blend 1 and Blend 2. After the measurement is carried out, the voltage values ​​obtained at the setting of low, medium high, on the inverter input with a value on Blend 1 mode low 80 V with an error of 0.84%, Medium 90 V with error 0.84%, High 104 V with an error of 0.81%, in Blend 2 mode low 84 V with an error of 0.83%, Medium 86 V with a error of 0.85%, High 105 V with an error of 0.81%, the Cutting mode is low 162 V with an error of 2.88%, medium 172 V with an error of 3.03%, High 192 V with an error of 2.86%. The measurement shows an error of less than 1% for Blend 1 and Blend 2 modes while cutting is less than 3%. The results of this study can be implemented in order to minimize errors due to lack of power settings and mode selection during surgery.