Dyah Titisari
Department of Medical Electronics Engineering Technology, Poltekkes Kemenkes Surabaya

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Water-Bath Calibration Device with Data Storage Using Six Thermocouple Sensor Yanti Kusumawardani; Endang Dian Setioningsih; Dyah Titisari
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v2i2.2

Abstract

Uneven temperature distribution in the water-bath chamber can cause the temperature conditions in the chamber are not the same. Temperature, humidity, atmospheric pressure, and dust particles are the main factors that adversely affect the accuracy of the water bath's temperature. Therefore, the purpose of this study is to design a calibration device for water-bath with six-channel temperature sensors. In this study, the system able to detect temperatures at each point. The K-type thermocouple sensor is used to detect the temperature at each chamber point with the help of the MAX6675 module as a signal conditioning amplifier. The sensor readings will be displayed on a personal computer using a USB cable, and the sensor readings can be stored on a personal computer in the TXT format so that the data can be reprocessed using Microsoft Excel for further calibration purposes. This study aims to facilitate the calibration process and the processing of calibration data. Based on the obtained measurements, a temperature error for 40 ° C channel one 1.4 %, channel two 1.8%, channel three 0.4%, channel four 0.2%, channel five 0.2% and channel 6 0.2%. Furthermore, the accuracy for temperature setting of 50 ° C for channel one 2.25%, channel two 2.26%, channel three 2.00%, channel four 2.44%, channel five 2% and channel six 1.6%. Moreover, the accuracy for setting temperature 60 ° C for channel one is 0.3%, channel two 0.6%, channel three 0.5%, channel four 1.5%, channel five 2% and channel six 1.8%. Based on the test results, this design has the lowest error of 0.2% and the highest error of 2.44%. The results of this research can be implemented as a water bath calibrator device to maintain the temperature stability of the instrument.
Low Cost Monitoring Kesehatan Berbasis Internet of Thing Nuril Hidayanti; Dyah Titisari; Her Gumiwang Ariswati; Triwiyanto Triwiyanto
Jurnal Teknokes Vol 13 No 2 (2020): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sistem monitoring pasien di rumah sakit dilakukan secara konvensional dengan mendatangi pasien, kendalanya apabila jumlah tenaga dan fasilitas medis terbatas dengan banyaknya jumlah pasien akan membahayakan pasien yang membutuhkan prioritas penanganan. Tujuan dari penelitian ini adalah mendesain sebuah alat monitoring detak jantung, suhu tubuh, dan respirasi berbasis IOT (parameter detak jantung dan suhu tubuh) dengan tampilan pada web thingspeak dan terdapat notifikasi gmail yang dapat diakses tenaga medis. Kontribusi penelitian ini merancang alat monitoring kesehatan berbasis IOT (Internet of Thing) sehingga dapat dilakukannya pemantauan jarak jauh dengan memanfaatkan web Thingspeak sebagai tampilan hasil penelitian dan memberi notifikasi apabila terdapat nilai tidak normal. Pengambilan data dapat menghasilkan hasil yang akurat diperlukan posisi rileks dari pasien dan kestabilan jaringan wi-fi agar pemantauan tidak terhambat. Penelitian ini menggunakan Sensor suhu DS18B20 merupakan sensor digital dengan 1 jalur data yang diletakkan pada bagian aksila dan pulse sensor (SEN11574) dengan 1 jalur data yang diletakkan pada jari tangan. Hasil penelitian telah dapat dilakukan pengambilan data pada pasien 1 dengan kesalahan rata-rata alat 0,6 untuk parameter detak jantung dan 0,05 untuk parameter suhu tubuh. Pada penelitian ini telah dapat menampilkan data pada web Thingspeak dan mengirimkan notifikasi dengan baik sesuai yang diharapkan peneliti. Penelitian ini juga telah dapat diimplementasikan pada sistem alat monitoring yang sejenis untuk meningkatkan kemudahan pemantauan.
Analysis of the Effect of Red LED and Infrared Flip Flop Frequency on SpO2 Measurement Accuracy Moch Prastawa Assalim T P; Dyah Titisari; Wahyu Caesarendra; Bagas Angger Prakoso
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 2 (2022): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.3

Abstract

Oxygen saturation is a vital parameter for the early detection of advanced oxygen deficiency. Spo2 is a tool that measures the amount of oxygen in the blood non-invasively. This equipment consists of ophotodiodeiode as a sensor as well as red and infrared LEDs with a flip flop driver circuit that has a certain frequency. In this case, several research projects and equipment on the market have various flip flop frequencies. This research aims to find the best frequency setting value for red and infrared led drivers on SpO2 devices. In this research, a SpO2 that can be adjusted with a flip flop frequency of 400 Hz to 1400 Hz was designed. The SPO2 reading from the sensor is presented on the OLED LCD panel using Arduino Mega as a data processor from the driver frequency output controller. Frequency adjustment for sensor drivers is also at 400 Hz to 1400 Hz. This tool was further used to measure the frequency variation of the flip flop. The measurement results on the subject's finger were then compared with the results of the standard SpO2 tool to see the effect of the frequency value on the level of accuracy of the tool. The results of the comparison data processing showed that the largest error of 0.35% occurred in the SPO2 measurement using the 600 Hz sensor frequency driver, and the smallest error value of 0.07%, occurred in the use of the driver frequency at 1400Hz. These results can be used in the initial design of the production of SpO2 equipment, the higher the frequency, the more accurate it will be. This study only discusses the frequency, whereas the intensity parameters of the red and infrared LEDs also vary. In future research, it would be better to involve the LED light intensity parameter to determine its effect on the accuracy of the tool.