Gusta Gunawan
Civil Engineering Department, Faculty of Engineering, Universitas Bengkulu, Bengkulu, Indonesia

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Pemodelan Genangan Banjir Sub DAS Bengkulu Hilir Provinsi Bengkulu Menggunakan Program Hec-Ras 5.0.7 Berbasis Ras Mapper dan Arc-Gis 10.8 Gunawan, Gusta; peri, Bes; Misliniyati, Rena; Trie Saputra, Iqbal Kurnia; patrianusa, Iqbal; Aqilah, Hauranda
MEDIA KOMUNIKASI TEKNIK SIPIL Volume 29, Nomor 1, JULI 2023
Publisher : Department of Civil Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/mkts.v29i1.53915

Abstract

 The Down Stream Air Bengkulu Watershed is part of the Air Bengkulu Watershed in Bengkulu Province. Flooding in this area frequently leads to major subdistrict, economy, and environmental impacts. The aim of the research is to develop a flood forecasting model that is capable of mapping potential flood areas in order to support flood control efforts. The method used is a hybrid model between a hydrological model, a hydraulics model and a Geographic Information System (GIS). The hydrological model is input to HEC-RAS software, It’s developed based on Snyder's Synthetic Unit Hydrograph (SUH). The hydraulics model was prepared using the software of HEC-RAS version 5.0.7 and the it’s output was used as material for preparing potential flood inundation maps. The potential flood inundation map was prepared by overlay method with the help of the Arc-GIS version 10.8 application. The research results show that the peak flood time is 7.43 hours with peak discharge for a 100 year return period of 1,542 m3/second. Flood inundation occurred in nine sub-Districts including Talang Empat District (552,819 ha), Karang Tinggi (391,648 ha), Selebar (24,118 ha), Singaranpati (95,806 ha), Ratu Samban (6,838 ha), Ratu Agung (212,173 ha), Sungaiserut (541,659 ha), Muara Bangkahulu (395,495 ha), and Pondok Kubang (197,167 ha). The conclusion of the research is that the model developed is able to answer peak times, area and water level of inundation as well as potential locations that will be flooded. 
Soil Erosion Prediction Using GIS and Remote Sensing on Manjunto Watershed Bengkulu, Indonesia Gunawan, Gusta; Sutjiningsih, Dwita; Soeryantono, Herr; Widjanarko, Soelistiyoweni
JOURNAL OF TROPICAL SOILS Vol. 18 No. 2: May 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i2.141-148

Abstract

The study aims to assess the rate of erosion that occurred in Manjunto Watershed and financial loss using Geographic Information System and Remote Sensing. Model used to determine the erosion is E30 models. The basis for the development of this model is to integrate with the slope of the slope between NDVI. The value of NDVI obtained from satellite imagery. Slope factor obtained through the DEM processing. To determine the amount of economic losses caused by erosion used the shadow prices. The amount of nutrients lost converted to fertilizer price. The results showed that the eroded catchment area has increased significantly. The rate of average annual erosion in the watershed Manjunto in 2000 amounted to 3 Mg ha-1 yr-1. The average erosion rate in the watershed Manjunto annual increase to 27 Mg ha-1 yr-1 in the year 2009. Economic losses due to erosion in 2009 was Rp200,000,- for one hectare. Total losses due to erosion for the total watershed area is Rp15,918,213,133, -. The main factor causing the high rate of erosion is high rainfall, slope and how to grow crops that do not pay attention to the rules of conservation.Keywords: Soil erosion, digital elevation model, GIS, remote sensing, valuation erosion[How to Cite: Gunawan G, D Sutjiningsih, H Soeryantono and S Widjanarko. 2013.Soil Erosion Prediction Using GIS and Remote Sensing on Manjunto Watershed Bengkulu-Indonesia. J Trop Soils 18 (2): 141-148. Doi: 10.5400/jts.2013.18.2.141][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.2.141]REFERENCESAksoy E, G Ozsoy and MS Dirim. 2009. Soil mapping approach in GIS using Landsat satellite imagery and DEM data. Afr J Agric Res 4: 1295-1302.Ananda J and G Herath. 2003. Soil erosion in developing countries: a socio-economic appraisal. J Environ Manage 68: 343-353.Ananda J, G Herath and A Chisholm. 2001. Determination of yield and Erosion Damage Functions Using Subjectivly Elicited Data: application to Smallholder Tea in Sri Lanka. Aust J Agric Resour Ec 45: 275-289.Ande OT, Y Alaga and GA Oluwatosin. 2009. Soil erosion prediction using MMF model on highly dissected hilly terrain of Ekiti environs in southwestern Nigeria. Int J Phys Sci 4: 053-057.Arnold JG, BA Engel and R Srinivasan. 1998. A continuous time grid cell watershed model. Proc. of application of Advanced Technology for management of Natural Resources.Arsyad S.  2010. Konservasi Tanah dan Air. IPB Press. Bogor-Indonesia (in Indonesian).Asdak C.1995. Hydrology and Watershed Management. Gadjah Mada University Press, Yogyakarta.Barlin RD and ID Moore. 1994. Role of buffer strips in management of waterway pollution: a review. Environ Manage 18: 543-58.Brough PA.1986. Principle of Geographical Information Systems For Land Resources Assessment. Oxford University Press, 194p.Clark B and J Wallace. 2003. Global connections: Canadian and world issues. Toronto, Canada: Pearson Education Canada, Inc.Cochrane T A and DC Flanagan. 1999. Assessing water erosion in small watershed using WEPP with GIS and digital elevation models. J Soil Water Conserv 54: 678 685.Dames TWg. 1955. The Soils of East Central Java; with a Soil Map 1:250,000. Balai Besar Penjelidikan Pertanian, Bogor, Indonesia.Dixon JA, LF Scura, RA Carpenter and PB Sherman. 2004. Economic Analysis of Environmental Impacts 2nd ed. Eartscans Publication Ltd., London.Fistikoglu O and NB Harmancioglu. 2002. Integration of GIS with USLE in Assessment of Soil Erosion. Water Resour Manage 16: 447-467.Green K. 1992. Spatial imagery and GIS: integrated data for natural resource management. J Forest 90: 32-36.Hazarika MK and H Honda. 2001. Estimation of Soil Erosion Using Remote Sensing and GIS, Its Valuation & Economic Implications on Agricultural Productions. The 10th International Soil Conservation Organization Meeting at Purdue University and the USDA-ARS Soil Erosion Research Laboratory.Hazarika S, R Parkinson, R Bol, L Dixon, P Russell, S Donovan and D Allen. 2009. Effect of tillage system and straw management on organic matter dynamics. Agron Sustain Develop 29: 525-533. doi: 10.1051/agro/2009024. Honda KL, A Samarakoon, Y Ishibashi, Mabuchi and S Miyajima.1996. Remote Sensing and GIS technologies for denudation estimation in Siwalik watershed of Nepal,p. B21-B26. Proc. 17th Asian Conference on Remote Sensing, Colombo, Sri lanka.Kefi M and K Yoshino. 2010. Evaluation of The Economic Effects of Soil Erosion Risk on Agricultural Productivity Using Remote Sensing: Case of Watershed in Tunisia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan.Kefi M, K Yoshino, K Zayani and H Isoda. 2009. Estimation of soil loss by using combination of Erosion Model and GIS: case of study watersheds in Tunisia. J Arid Land Stud 19: 287-290.Lal R. 1998. Soil erosion impact on agronomic productivity and environment quality: Critical Review. Plant Sci 17: 319-464.Lal. 2001. Soil Degradation by Erosion. Land Degrad Develop12: 519-539.Lanya I. 1996. Evaluasi Kualitas lahan dan Produktivitas Lahan Kering Terdegradasi di Daerah Transmigrasi WPP VII Rengat Kabupaten Indragiri Hulu, Riau. [Disertasi Doktor]. Program Pasca Sarjana IPB, Bogor (in Indonesian).Mermut AR and H Eswaran. 2001. Some major developments in soil science since the mid 1960s. Geoderma 100: 403-426.Mongkolsawat C, P Thurangoon and Sriwongsa.1994. Soil erosion mapping with USLE and GIS. Proc. Asian Conf. Rem. Sens., C-1-1 to C-1-6.Morgan RPC, Morgan DDV and Finney HJ. 1984. A predictive model for the assessment of erosion risk. J Agric Eng Res 30: 245-253.Morgan RPC. 2005. Soil Erosion and Conservation. 3rd ed. Malden, MA: Blackwell Publishing Co.Panuju DR,  F Heidina, BH Trisasongko, B Tjahjono, A Kasno, AHA Syafril. 2009. Variasi nilai indeks vegetasi MODIS pada siklus pertumbuhan padi. J.Ilmiah Geomat. 15, 9-16 (in Indonesian).Pimentel D, C Harvey, P Resosudarmo, K. Sinclair, D Kurz, M Mc Nair, S Christ, L Shpritz, L Fitton, R Saffouri and R Balir. 1995. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 267: 1117-1123.Saha SK and LM Pande. 1993. Integrated approach towards soil erosion inventory for environmental conservation using satellite and agrometeorological data. Asia Pac Rem Sens J 5: 21-28.Saha SK, Kudrat M and Bhan SK.1991. Erosional soil loss prediction using digital satellitee data and USLE. In: S Murai (ed).  Applications of Remote Sensing in Asia and Oceania – Environmental Change Monitoring.  Asian Association of Remote Sensing, pp. 369-372.Salehi MH, Eghbal MK and Khademi H. 2003. Comparison of soil variability in a detailed and a reconnaissance soil map in central Iran. Geoderma 111: 45-56.Soil Survey Staff.  1998.  Keys to Soil Taxonomy. Eighth Edition. United States Department of Agriculture Natural Resources Conservation Service. Washington, D.C.
ANALISIS DATA HIDROLOGI SUNGAI AIR BENGKULU MENGGUNAKAN METODE STATISTIK Gunawan, Gusta
Inersia: Jurnal Teknik Sipil Vol. 9 No. 1 (2017)
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (609.634 KB) | DOI: 10.33369/ijts.9.1.47-58

Abstract

Bengkulu municipality as a constituent element of the Air Bengkulu watershed with 51,500 of hectares area bypassed by the stream of Air Bengkulu River which empties into the Teluk Segara District, municipal of Bengkulu. Air Bengkulu River suffered flood at least twice a year of frequency as result of the increase in water discharge (Q) in the rainy season. The purpose of this research is to calculate the amount of peak river discharge of Air Bengkulu and mappingthe distribution of inundation water that may occur in the city of Bengkulu. Analysis of the mean daily maximum rainfall area was conducted by Thiessen Polygon using 15 last years of rainfall datas. Calculation of peak discharge using rational methods for different return period plans Analysis of Rainfall of flood modeling simulation is done by using HEC-RAS 4.1.0 and flood inundation mapping is done by using Hec-GeoRAS 4.3.1 flood modeling. The result of rainfall plan calculations was qualified by Gumbel type 1 method. The results of the Air Bengkulu river peak discharge quantify for return period 5, 10, 25, 50 and 100 years respectively 339.66 m3/sec; 470.38m3/sec; 520.59m3/sec; 557.83m3/sec; 594.79m3/sec; 631.62m3/sec. Results of generated mapping showed the areas affected by flood inundation in Bengkulu City namely Pasar Bengkulu village, Kampung Klawi, Rawa Makmur, Suka Merindu, Tanjung Agung,Tanjung Jaya, and Semarang. The depth value of inundation mapping for every affected village of floodwaters are vary, but in the range of 0 - 110 cm.
DESAIN BREAKWATER SISI MIRING SEBAGAI UPAYA MENGANTISIPASI LIMPASAN AIR LAUT PADA BANGUNAN REVETMENT DI PANTAI MALABERO KOTA BENGKULU Yannovita, Welendri; Besperi, Besperi; Gunawan, Gusta
Inersia: Jurnal Teknik Sipil Vol. 9 No. 2 (2017)
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (660.509 KB) | DOI: 10.33369/ijts.9.2.1-10

Abstract

This research aims to desaign of sideways breakwater as an effort to anticipate the water  overflow On The Revetment Building At Malabero Beach Bengkulu City. The data used is primary data and secondary data. Primary Data Processing Method Used in Field Direct Namely Collection (Hs and Ts), while the secondary data analysis method using wind data, analysis data tides and topography. The results of the breakwater have the elevation 0f 5,55m, width 3,71 m on the head and 3,91 m on the arms. Weight unit protective cover breakwater head W=3,31 tons, W/10=331 kg, W/200=16 kg and the arms W= 3,87tons,  W/10=387 kg,W/200= 19 kg. With 13 and 12 slides of cover in each 10 m on the head and arm.
REDESAIN BANGUNAN BAGI DAN BANGUNAN SADAP DI DAERAH IRIGASI BENDUNG AIR KEMUMU KABUPATEN BENGKULU UTARA Romah, Septi Kurnia Hayati; Besperi, Besperi; Gunawan, Gusta
Inersia: Jurnal Teknik Sipil Vol. 9 No. 2 (2017)
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.189 KB) | DOI: 10.33369/ijts.9.2.11-22

Abstract

Air Kemumu weir in Kemumu village subdistrict of Kecamatan Arma Jaya Bengkulu Utara  Regency, is one of the weir which has irrigation canal and irrigation construction in its system. This research is aimed to plan the canal dimension, divider, and reservoir construction based on 5, 50, and 100 years periodic flow in Kemumu weir irrigation area of Bengkulu Utara. Observation and measurement were done directly in that area in order to find out the dimensionand the problem. Research method that is used in this research is done by counting down the rainfall data by using algebra average method. The primary data are taken from the speed of water flow in canal, canal dimension, and construction dimension. The expected result of rainfall measurement that can complete pre-requirement is Gumbel method type 1. The measurement of the flow is using rational method for any types of periodic flow. The result of this research is finding the final hydrolysis measurement for the secondary BW.1 and tertiary BS 2A canal are 0,52m and 0,35m for the base width BW.1 and BS 2A. The measurement for the canal design based on periodic flow for BW.1 and BS 2A in Q5, Q50, and Q100 are 2,14m, 2,92m,3,14m, 1,74m, 2,17m, and 2,34m. Thetop width (b) measurement of the divider BW.1 and reservoir BS 2A construction are 0,44m and 0,24m. The measurement of its width in Q5, Q50, and Q100 are 1,78m, 2,44m, 2,60m, 1,50m, 2,20m, and 2,34 m.
ANALISIS GELOMBANG PASANG TERHADAP BANGUNAN GROIN TIPE I (STUDI KASUS PANTAI KOTA PADANG) Nadita, Dwiki; Besperi, Besperi; Gunawan, Gusta
Inersia: Jurnal Teknik Sipil Vol. 11 No. 2 (2019)
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (799.22 KB) | DOI: 10.33369/ijts.11.2.1-11

Abstract

Pantai Kota Padang had a breakwater (groin) which serves to withstand sedimentation transport, but building has been damaged and deformed. The purpose of this study was to analyze the building of form I groin using dolos material at Pantai Kota Padang. The method of conducting research primary data processing method used in field direct namely collection (Hs and Ts), while secondary data analysis method using wind data, and analysis data tides. Secondary data in this in this research is the wind data taken for ten years (2009 - 2018) obtained from the Badan Meteorologi Klimatologi dan Geofisika (BMKG) Maritim Teluk Bayur and the tides data taken during the last 5 years (2014-2018) whom obtained from PT. Pelabuhan Indonesia II Teluk Bayur. Results of the groin dolos have 60,803 m in length, 2,20 m on water level, 4,875 m elevation lighthouse and 8,875 m elevation of building, peak width of 1,433 m on the arms building. Weight unit protective cover dolos groin arms are W=0,261 tons, W/10=21,6 kg, W/200=1,3 kg, and amount each layer is 5 m2 as many as 16 pieces for the arms building.Keywords: Breakwater, Groin, Dolos
Pemodelan Transpor Sedimen Pantai Kualo Kota Bengkulu besperi, Besperi; Gunawan, Gusta; Utari, Tessa Dwi
Inersia: Jurnal Teknik Sipil Vol. 13 No. 1 (2021)
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/ijts.13.1.25-30

Abstract

Provinsi Bengkulu merupakan salah satu daerah dengan pantai terpanjang di Indonesia. Secara umum keadaan pantai di Bengkulu telah banyak mengalami kerusakan berupa abrasi dan sedimentasi. Perubahan garis pantai disebabkan oleh faktor alam dan/atau faktor manusia. Secara geografis, Pantai Kualo terletak di bagian Barat Pulau Sumatera yang berhadapan langsung dengan Samudera Hindia. Ini berarti, seluruh tepian barat merupakan daerah laut lepas dengan sedikit pulau yang menghalanginya. Sehingga pada saat nantinya, pihak yang berwenang dapat mempertimbangkan  hal-hal yang harus dilakukan dalam menjaga pesisir pantai di Pantai Kualo ini. Berdasarkan hal ini,   penelitian tentang peramalan perubahan garis pantai di  Pantai kualo Kota Bengkulu dalam jangka waktu tertentu perlu dilakukan . Tujuan dari penelitian ini yaitu menganalisis besarnya transpor sedimen yang terjadi di Pantai Kualo Bengkulu dan memprediksi perubahan garis pantai dalam jangka waktu 5 tahun di Pantai Kualo Bengkulu. Penelitian ini dilakukan dengan menghitung transpor sedimen yang masuk dan keluar pesisir pantai dengan membagi pantai menjadi 10 sel (pias) sepanjang pantai 500 m dengan panjang 50 m pada setiap sel (pias) ditambah satu pias sebagai titik acuan. Penelitian yang dilakukan menghasilkan besarnya transpor sedimen dan perubahan garis pantai.