Rendy Rendi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Workforce Classification in West Java 2018 With Random Forest Ahmad Safrian Fauzi; Muh. Rizki; Rendy Rendi; Ria Nurul; Tika Novitasari; Rani Nooraeni
Jurnal Matematika, Statistika dan Komputasi Vol. 17 No. 2 (2021): JANUARY 2021
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/jmsk.v17i2.11680

Abstract

Pengangguran di Indonesia merupakan masalah yang serius. Tingginya angka pengangguran di Indonesia tersebut dikarenakan jumlah lapangan kerja yang tersedia tidak sebanding dengan jumlah angkatan kerja yang terus meningkat. Berdasarkan data BPS, Provinsi Jawa Barat sebagai penyumbang terbesar jumlah pengangguran di indonesia, dengan angka tingkat pengangguran terbuka sebesar 8,52 persen. Tujuan penelitian ini untuk melakukan klasifikasi penduduk angkatan kerja kedalam kelompok berstatus pengangguran atau bukan pengangguran (bekerja) di Provinsi Jawa Barat tahun 2018 dengan metode random forest menggunakan pendekatan machine learning. Model random forest ini dibentuk dengan 80 persen dari data total atau sebanyak 16.059 data untuk data training dan 20 persen dari data total atau sebanyak 4.015 data untuk data testing. Penelitian ini menggunakan data Sakernas 2018 dan terdapat tujuh variabel yang digunakan dalam penelitian, yaitu klasifikasi wilayah, jenis kelamin, umur, status perkawinan, tingkat pendidikan, pelatihan, dan pengalaman kerja. Dalam model random forest yang terbentuk, variabel status pernikahan dan tingkat pendidikan seseorang memiliki kontribusi besar dalam menentukan status pengangguran.