Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Journal of Information Technology and Computer Engineering

Sistem Kendali Sirkulasi Udara dan Pembatasan Jumlah Pelanggan Toko Berbasis IoT Labiq Al Hanif; Aditya Putra Perdana Prasetyo; Huda Ubaya
JITCE (Journal of Information Technology and Computer Engineering) Vol 5 No 02 (2021): Journal of Information Technology and Computer Engineering
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jitce.5.02.81-92.2021

Abstract

The emergence of the COVID-19 pandemic in early 2020 had a major impact on human life on a global scale. Many actions and policies are aimed at anticipating transmission and breaking the chain of the spread of the COVID-19 virus, thus requiring store owners to implement various health protocols. This study discusses the monitoring system for the condition of the storeroom in real-time with the IoT concept, and the implementation of Sugeno fuzzy logic in controlling the speed of the exhaust fan motor to circulate air in the room and limit the number of customers during the COVID-19 pandemic based on conditions of temperature, humidity, and many people in the storeroom. The actual test results from the implementation of Sugeno fuzzy logic show that the system has good performance in controlling the speed of the exhaust fan and limiting the number of customers based on the level of danger of the potential COVID-19 transmission in the room automatically and can monitor the condition of the room through the Thinger.io website in real time.
Control System for U-Arm Robot Arm Movement with Linear Gripper Based on Inverse Kinematic Method Prasetyo, Aditya Putra Perdana; Rahmatullah, Ikang; Exaudi, Kemahyanto; Rendyansyah, Rendyansyah
JITCE (Journal of Information Technology and Computer Engineering) Vol 8 No 2 (2024): Journal of Information Technology and Computer Engineering
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jitce.8.2.97-103.2024

Abstract

This research presents the development of a U-Arm model robot with three degrees of freedom, utilizing Inverse Kinematic calculations. The novelty of this project lies in its precise control of the robot arm's movements through advanced kinematic algorithms. Inverse Kinematics is a mathematical process used to determine the joint angles of the robot arm from known (x, y, z) coordinates of the end-effector and the lengths of each link. The robotic arm consists of four links with lengths of 8.2 cm, 15 cm, 16 cm, and 18.4 cm, respectively, and is equipped with a gripping module for object manipulation. The methodology involves calculating the joint angles required for the desired end-effector position, ensuring accurate and efficient movement. Testing results indicate an average coordinate error of 7.13%, demonstrating the system's precision and reliability. This error rate provides valuable insights into the performance and potential areas for improvement in the kinematic model. Additionally, this research includes the development of a program to control the servo motor speed using For and delay functions. This program enhances the robot's operational efficiency by allowing precise speed adjustments, which are crucial for various applications. Overall, this study contributes to the field of robotics by offering a detailed analysis of kinematic control and program development for a multi-link robotic arm, highlighting its potential for practical applications.
Control System for U-Arm Robot Arm Movement with Linear Gripper Based on Inverse Kinematic Method Prasetyo, Aditya Putra Perdana; Rahmatullah, Ikang; Exaudi, Kemahyanto; Rendyansyah, Rendyansyah
JITCE (Journal of Information Technology and Computer Engineering) Vol. 8 No. 2 (2024)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jitce.8.2.97-103.2024

Abstract

This research presents the development of a U-Arm model robot with three degrees of freedom, utilizing Inverse Kinematic calculations. The novelty of this project lies in its precise control of the robot arm's movements through advanced kinematic algorithms. Inverse Kinematics is a mathematical process used to determine the joint angles of the robot arm from known (x, y, z) coordinates of the end-effector and the lengths of each link. The robotic arm consists of four links with lengths of 8.2 cm, 15 cm, 16 cm, and 18.4 cm, respectively, and is equipped with a gripping module for object manipulation. The methodology involves calculating the joint angles required for the desired end-effector position, ensuring accurate and efficient movement. Testing results indicate an average coordinate error of 7.13%, demonstrating the system's precision and reliability. This error rate provides valuable insights into the performance and potential areas for improvement in the kinematic model. Additionally, this research includes the development of a program to control the servo motor speed using For and delay functions. This program enhances the robot's operational efficiency by allowing precise speed adjustments, which are crucial for various applications. Overall, this study contributes to the field of robotics by offering a detailed analysis of kinematic control and program development for a multi-link robotic arm, highlighting its potential for practical applications.
Design of a Drowsiness Prevention Helmet with Vibration and IoT-Based Theft Detection Alarms Prasetyo, Aditya Putra Perdana; Sitorus, Harlis Richard; Isnanto, Rahmat Fadli; Hermansyah, Adi
JITCE (Journal of Information Technology and Computer Engineering) Vol. 8 No. 1 (2024)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jitce.8.1.19-29.2024

Abstract

Ensuring safety while riding a motorbike is an imperative task. Currently, safety products such as helmets have the capability to provide protection to users without the additional feature of issuing warnings. Consequently, a preemptive alert system is developed to offer timely notifications to drivers. The experimental setup involves the utilization of a Max30100 sensor that is linked to a microcontroller and integrated into a helmet. The objective of this final project is to offer a timely alert to the rider and utilize the Max30100 sensor for pulse detection in order to ascertain the normalcy of the rider's pulse. In instances where the rider encounters tiredness and fatigue, it is common for the pulse intensity to exhibit a reduction. The Blynk application presents the detection pulse findings on the smartphone screen, while the buzzer on the helmet will activate in response to vibrations and sounds once the pulse has diminished. Based on testing, the average pulse rate on quiet road conditions is 78.58 BPM. On busy road conditions, the average pulse rate is 73.25 BPM. While in traffic conditions, the average pulse rate is 73.5 BPM. The helmet theft detector uses a Sharp GP2Y0A21 sensor that can only detect object distances up to 10 cm.
Sistem Kendali Sirkulasi Udara dan Pembatasan Jumlah Pelanggan Toko Berbasis IoT Hanif, Labiq Al; Prasetyo, Aditya Putra Perdana; Ubaya, Huda
JITCE (Journal of Information Technology and Computer Engineering) Vol. 5 No. 02 (2021)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jitce.5.02.81-92.2021

Abstract

The emergence of the COVID-19 pandemic in early 2020 had a major impact on human life on a global scale. Many actions and policies are aimed at anticipating transmission and breaking the chain of the spread of the COVID-19 virus, thus requiring store owners to implement various health protocols. This study discusses the monitoring system for the condition of the storeroom in real-time with the IoT concept, and the implementation of Sugeno fuzzy logic in controlling the speed of the exhaust fan motor to circulate air in the room and limit the number of customers during the COVID-19 pandemic based on conditions of temperature, humidity, and many people in the storeroom. The actual test results from the implementation of Sugeno fuzzy logic show that the system has good performance in controlling the speed of the exhaust fan and limiting the number of customers based on the level of danger of the potential COVID-19 transmission in the room automatically and can monitor the condition of the room through the Thinger.io website in real time.