Claim Missing Document
Check
Articles

Found 5 Documents
Search

Implementation of Line Follower Robot based Microcontroller ATMega32A Abdul Latif; Hendro Agus Widodo; Robbi Rahim; Kunal Kunal
Journal of Robotics and Control (JRC) Vol 1, No 3 (2020): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1316

Abstract

The development of technology in the field of robotics is very fast, but in the eastern regions of Indonesia, namely the development of the development has not yet felt the impact. Especially in the university's electrical laboratory Musamus Merauke learning media devices for microcontrollers are also not yet available, therefore the author wants to pioneer by implementing the simplest robot design, the line follower robot, where the robot only goes along the lines. This study uses an experimental method, by conducting a research process based on sequences, namely: needs analysis, mechanical chart design, electronic part design and control program design, manufacturing, and testing. The line follower robot based on ATmega32A microcontroller has been tested and the results show that the line follower robot can walk following the black line on the white floor and can display the situation on the LCD. But this line follower robot still has shortcomings in the line sensor sensitivity process depending on a certain speed. At speeds of 90-150 rpm the line follower robot can follow the path, while more than 150 rpm the robot is not able to follow the path.
Motor DC PID System Regulator for Mini Conveyor Drive Based-on Matlab Abdul Latif; Afif Zuhri Arfianto; Hendro Agus Widodo; Robbi Rahim; Elsayed T.Helmy
Journal of Robotics and Control (JRC) Vol 1, No 6 (2020): November
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1636

Abstract

The goal of the research was to develop a Proportional Integral Derivative (PID) control DC motor system as a Matlab-based driver mini conveyor to discover how to regulate speed on an actual mini conveyor where certain factors that impact the research are not considered 0. The hardware configuration of the mini conveyor used hollow steel as a frame and two copies of the roller belt for the stretch belt conveyor. The PID control system used an empirical approach to get the DC motor's response system to determine the best fit of proportional gain, integral gain and derivative gain, and then implement those PID control systems using Matlab and Arduino as the tools for data acquisition. The speed sensor (Rotary Encoder) was mounted on the roller belt to accurately gain read speed. This sensor will submit data on every increasing in PWM to accurately measure the speed and control speed at the same time, based on the set points. The consequence of this work was the proportional gain values = 0.94624747, the Integral gain = 51.4023958 and the derivative gain = 0.01941504. The PID control, designed to monitor the response of motor DC speed on this research, had successfully reached set point value and decreased steady state error from 47.16 percent to 1.015188 percent (unloaded) and 2.2020751 percent (loaded) on the real response device.
Temperature and Humidity Controlling System for Baby Incubator Abdul Latif; Hendro Agus Widodo; Rachmad Andri Atmoko; Thanh Nguyen Phong; Elsayed T.Helmy
Journal of Robotics and Control (JRC) Vol 2, No 3 (2021): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.2376

Abstract

Baby incubator is very important to keep the newborn’s body temperature especially for premature babies. The research aimed to design a baby incubator with controlled temperature and humidity. The incubator is designed to have a length of 60 cm, a width of 40 cm, and a height of 30 cm. System of baby incubator will automatically turn on or turn off the fan and or heating in accordance with the normal range of temperature and humidity in the incubator. The normal limits of temperature used is 33°C to 35°C. While the normal limits of air humidity in the incubator used is between 40% and 60%. Data acquisition system consists of temperature and humidity sensor, microcontroller ATmega8535, fan, heater, and LCD. LCD is used to display the results of measurements of temperature and humidity. Heater is used to regulate the temperature in the incubator. While fan is used to regulate the humidity in the incubator. Test results show that the heater will turn on if the temperature is below the limits of 33°C. While the fan will turn on if the humidity is above 60%
Temperature Monitoring System for Baby Incubator Based on Visual Basic Abdul Latif; Afif Zuhri Arfianto; Joessianto Eko Poetro; Thanh Nguyen Phong; Elsayed T.Helmy
Journal of Robotics and Control (JRC) Vol 2, No 1 (2021): January
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.2151

Abstract

An incubator room is conditioned to keep the temperature warm so the baby feels comfortable. A temperature monitor system for the incubator room placed separately from where the officer works is a hassle. It wastes time. Temperature detector design for infant incubator which has constant temperature is necessary. An LM35 sensor as a temperature detector was used in the design. The sensor was installed in a 100 x 80 cm room. The detected temperature was displayed on the LCD and computer in the staff room. Temperature (°C) is converted by an Arduino Uno microcontroller into an ADC (Analog Digital to Converter) value. Several LM35 sensors were mounted in rooms to detect the temperature. The LM 35 sensor was used by considering that it can be calibrated directly in the Celsius scale, a linear scale factor of 10mV/°C and has a temperature range between -55 ° C and 150 ° C.
Legged Fire Fighter Robot Movement Using PID Abdul Latif; K. Shankar; Phong Thanh Nguyen
Journal of Robotics and Control (JRC) Vol 1, No 1 (2020): January
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1104

Abstract

Proportional Integral Derivative (PID) control is a control system commonly used by industry. Approximately 90% of industrial equipment uses a PID controller because it is easy to use. In the Indonesian Fire Extinguisher Robot Contest (IFERC), the contested robots must follow the contours of the walls of the arena. A Fire extinguisher robot navigation was chosen because the race arena of the competition consisted of walls with different aisles and rooms. The navigation robots used PID control. This study designed and implemented a control algorithm for legged fire extinguishing robots using the PID method, where the PID control was processed in a microcontroller. The angles for each servo motor generated by the calculation of the PID enable the robot to navigate by taking decisions to move quickly or slowly, turn right, turn left and stop. The robot's proximity sensor data and fire sensors enable the fire to be extinguished. The result showed that the robot can carry out its duties optimally.