Claim Missing Document
Check
Articles

Found 2 Documents
Search

An hybridization of global-local methods for autonomous mobile robot navigation in partially-known environments Samia Sahloul; Donia BEN HALIMA Abid; Chokri REKIK
Journal of Robotics and Control (JRC) Vol 2, No 4 (2021): July
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.2483

Abstract

This paper deals with the navigation problem of an autonomous non-holonomic mobile robot in partially-known environment. In this proposed method, the entire process of navigation is divided into two phases: an off-line phase on which a distance-optimal reference trajectory enables the mobile robot to move from an initial position to a desired target which is planned using the B-spline method and the Dijkstra algorithm. In the online phase of the navigation process, the mobile robot follows the planned trajectory using a sliding mode controller with the ability of avoiding unexpected obstacles by the use of fuzzy logic controller. Also, the fuzzy logic and fuzzy wall-following controllers are used to accomplish the reactive navigation mission (path tracking and obstacle avoidance) for a comparative purpose. Simulation results prove that the proposed path planning method (B-spline) is simple and effective. Also, they attest that the sliding mode controller track more precisely the reference trajectory than the fuzzy logic controller (in terms of time elapsed to reach the target and stability of two wheels velocity) and this last gives best results than the wall-following controller in the avoidance of unexpected obstacles. Thus, the effectiveness of our proposed approach (B-spline method combined with sliding mode and fuzzy logic controllers) is proved compared to other techniques.
Backstepping Controller for Mobile Robot in Presence of Disturbances and Uncertainties Imen Hassani; Chokri Rekik
International Journal of Robotics and Control Systems Vol 3, No 4 (2023)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v3i4.1110

Abstract

The objective of this work is to devise an effective control system for addressing the trajectory tracking challenge in nonholonomic mobile robots. Two primary control approaches, namely kinematic and dynamic strategies, are explored to achieve this goal. In the kinematic control domain, a backstepping controller (BSC) is introduced as the core element of the control system. The BSC is utilized to guide the mobile robot along the desired trajectory, leveraging the robot’s kinematic model. To address the limitations of the kinematic control approach, a dynamic control strategy is proposed, incorporating the dynamic parameters of the robot. This dynamic control ensures real-time control of the mobile robot. To ensure the stability of the control system, the Lyapunov stability theory is employed, providing a rigorous framework for analyzing and proving stability. Additionally, to optimize the performance of the control system, a genetic algorithm is employed to design an optimal control law. The effectiveness of the developed control approach is demonstrated through simulation results. These results showcase the enhanced performance and efficiency achieved by the proposed control strategies. Overall, this study presents a comprehensive and robust approach for trajectory tracking in nonholonomic mobile robots, combining kinematic and dynamic control strategies while ensuring stability and performance optimization.