Brilly Nurhalim
Swiss German University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Vision-based vanishing point detection of autonomous navigation of mobile robot for outdoor applications Leonard Rusli; Brilly Nurhalim; Rusman Rusyadi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 12, No 2 (2021)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2021.v12.117-125

Abstract

The vision-based approach to mobile robot navigation is considered superior due to its affordability. This paper aims to design and construct an autonomous mobile robot with a vision-based system for outdoor navigation. This robot receives inputs from camera and ultrasonic sensor. The camera is used to detect vanishing points and obstacles from the road. The vanishing point is used to detect the heading of the road. Lines are extracted from the environment using a canny edge detector and Houghline Transforms from OpenCV to navigate the system. Then, removed lines are processed to locate the vanishing point and the road angle. A low pass filter is then applied to detect a vanishing point better. The robot is tested to run in several outdoor conditions such as asphalt roads and pedestrian roads to follow the detected vanishing point. By implementing a Simple Blob Detector from OpenCV and ultrasonic sensor module, the obstacle's position in front of the robot is detected. The test results show that the robot can avoid obstacles while following the heading of the road in outdoor environments. Vision-based vanishing point detection is successfully applied for outdoor applications of autonomous mobile robot navigation.