This Author published in this journals
All Journal Jurnal Teknik ITS
Muhammad Alfian Romadhon
Departemen Teknik Geomatika Institut Teknologi Sepuluh Nopember Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Identifikasi Area Terdampak Oil Seep di Darat dari Data Foto Udara Menggunakan Metode Object Based Image Analysis dan Convolutional Neural Networks (Studi Kasus: Kelurahan “X”) Nurul Fitri Alya; Filsa Bioresita; Noorlaila Hayati; Muhammad Alfian Romadhon; Sondy Hardian Meisajiwa
Jurnal Teknik ITS Vol 10, No 2 (2021)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373539.v10i2.70042

Abstract

Rembesan minyak merupakan salah satu peristiwa yang merugikan lingkungan pada industri minyak dan gas. Hal ini dikarenakan senyawa kimia yang terkandung pada rembesan minyak dapat mengakibatkan penurunan kualitas lingkungan hidup. Rembesan minyak (Oil Seep) tidak hanya terjadi di wilayah perairan, tetapi juga di daratan, yang terserap oleh tanah. Kejadian ini dapat mengindikasikan adanya sistem perminyakan di bawah permukaan tanah. Dalam penelitian ini daerah terdampak rembesan minyak diidentifikasi menggunakan metode deep learning dengan Convolutional Neural Networks dimana mesin diharapkan meniru sistem kerja otak manusia dalam mengidentifikasi objek. Data foto udara yang telah terorthorektifikasi dilakukan proses segmentasi untuk membantu proses pelabelan training data pada tahap selanjutnya. Training data tersebut menjadi data masukan pada tahap train deep learning model, dan akan dilakukan proses klasifikasi piksel untuk mendeteksi area terdampak oil seep. Hasil pengolahan berupa tingkat akurasi model mencapai 93% dan raster yang menampilkan area terdampak oil seep, yang kemudian dihitung luasan areanya, dan menghasilkan perhitungan area terdampak oil seep seluas ±1,4 hektar.