Proses identifikasi terhadap fenomena Long Memory tidaklah mudah. Berbagai alat identifikasi seperti plot ACF dan berbagai statistik uji lain masih sangat lemah. Beberapa penelitian mengungkapkan bahwa beberapa model nonlinear dapat dengan mudah teridentifikasi sebagai Long Memory yang sering dikenal sebagai Spurious Long Memory. Oleh karena itu, dalam tugas akhir ini akan disimulasikan pengaruh flow aggregation dan stock aggregation sebagai alternatif cara untuk mendeteksi Long Memory. Saham digunakan sebagai studi kasus karena proses pencatatannya sama dengan penerapan dari stock aggregation dan beberapa penelitian menyatakan bahwa harga mutlak dari return saham sering tertangkap sebagai fenomena Long Memory, namun tidak sedikit penelitian yang memodelkan return saham dengan model nonlinear, contohnya seperti ESTAR, sehingga simulasi dibangun dengan membangkitkan data Long Memory dan ESTAR sebagai Spurious Model dengan ukuran sampel 2000 dan 5000, lalu diaggregasi masing-masing dengan kedua jenis aggregasi hingga 10 level aggregasi. Hasil simulasi menunjukkan bahwa temporal aggregation terbukti dapat mendeteksi Long Memory dan membedakannya dengan ESTAR dari pola parameter integrasinya. Pada data ESTAR, kedua aggregasi menunjukkan bahwa nilai parameternya tidak berpola atau random seiring naiknya level aggregasi, sedangkan untuk Long Memory memiliki pola khusus untuk setiap jenis aggregasi. Tiga saham yang dijadikan studi kasus yaitu BMRI, BBNI, dan BBRI lebih baik dimodelkan dengan ARFIMA daripada ESTAR karena menghasilkan forecast yang akurasinya lebih baik