Muhammad Subekti
Pusat Teknologi dan Keselamatan Reaktor Nuklir - BATAN

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

OPTIMASI DESAIN TERMOHIDROLIKA TERAS DAN SISTEM PENDINGIN REAKTOR RISET INOVATIF DAYA TINGGI Endiah Puji Hastuti; Muhammad Subekti; Sukmanto Dibyo; M. Darwis Isnaini
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 3 (2015): Oktober 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1166.372 KB) | DOI: 10.17146/tdm.2015.17.3.2327

Abstract

ABSTRAK OPTIMASI DESAIN TERMOHIDROLIKA TERAS DAN SISTEM PENDINGIN REAKTOR RISET INOVATIF DAYA TINGGI. Implementasi reaktor inovasi telah diterapkan pada berbagai reaktor riset baru yang saat ini sedang dibangun.  Pada saat ini BATAN sedang merancang desain konseptual reaktor riset daya tinggi yang telah masuk pada tahap optimasi desain. Spesifikasi desain konseptual reaktor riset inovatif adalah reaktor tipe kolam berpendingin air dan reflektor D2O. Teras reaktor memiliki kisi 5x5 dengan 16 bahan bakar dan 4 batang kendali. Teras reaktor berada di dalam tabung berisi D2O yang berfungsi sebagai posisi iradiasi. Daya reaktor 50 MW didesain untuk membangkitkan fluks neutron termal sebesar 5x1014 n/cm2s. Teras reaktor berbentuk kompak dan menggunakan bahan bakar U9Mo-Al dengan tingkat muat uranium 7-9 gU/cm3. Desain termohidrolika yang mencakup pemodelan, perhitungan dan analisis kecukupan pendingin dibuat sinergi dengan desain fisika teras agar keselamatan reaktor terjamin. Makalah ini bertujuan menyampaikan hasil analisis perhitungan termohidrolika teras dan sistem reaktor riset inovatif pada kondisi tunak. Analisis dilakukan menggunakan program perhitungan yang telah tervalidasi, masing-masing adalah Caudvap, PARET-ANL, Fluent dan ChemCad 6.4.1. Hasil perhitungan menunjukkan bahwa pembangkitan panas yang tinggi dapat dipindahkan tanpa menyebabkan pendidihan dengan menerapkan desain teras reaktor bertekanan, di samping itu desain awal komponen utama sistem pembuangan panas yang terintegrasi telah dilakukan, sehingga konseptual desain termohidrolika RRI-50 dapat diselesaikan. Kata kunci : reaktor riset inovatif, Caudvap, PARET-ANL, Fluent, ChemCad 6.4.1.  ABSTRACT THERMALHYDRAULIC DESIGN AND COOLING SYSTEM OPTIMIZATION OF THE HIGH POWER INOVATIVE RESEARCH REACTOR. Reactor innovation has been implemented in a variety of new research reactors that currently are being built. At this time BATAN is designing a conceptual design of the high power research reactor which has entered the stage of design optimization. The conceptual design specifications of the innovative research reactor is a pool type reactor, water-cooled and reflected by D2O. The reactor core has a 5 x 5 grid with 16 fuels and 4 control rods, which is inserted into a tube containing D2O as an irradiation position. Reactor power of 50 MW is designed to generate thermal neutron flux of 5x1014 n/cm2s. The compact core reactor is using U9Mo-Al fuel with uranium loading of 7-9 gU/cm3. Thermal hydraulic design includes modeling, calculation and analysis of the adequacy of coolant created synergy with the physical design of reactor safety. This paper aims to deliver the results of thermal hydraulic calculation and system design analysis at steady state condition. The analysis was done using various calculation programs that have been validated, i.e. Caudvap, PARET-ANL, Fluent and ChemCad 6.4.1. The calculation results show that the heat generation can be transfered without causing a two phase flow boiling by applying pressurized reactor core design, while the main components of initial design system with an integrated heat dissipation has been done, to complete the conceptual design of the RRI-50 thermalhydraulics. Keywords : inovative research reactor, Caudvap, PARET-ANL, Fluent, ChemCad 6.4.1.
PREDICTION OF FUEL TEMPERATURE OF AP1000 DUE TO THE FORMATION OF CRUD AND OXIDE LAYER Muhammad Darwis Isnaini; Muhammad Subekti; Geni Rina Sunarya
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 2 (2017): Juni 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.911 KB) | DOI: 10.17146/tdm.2017.19.2.3521

Abstract

An analysis to predict the fuel temperature due to crud and oxide layer formed on the hot sub-channel cladding surface of AP1000 reactor has been performed. During reactor operation, the heat transfer and cooling process occur on the fuel cladding surface. During the heat exposure process, an oxide layer and crud are formed on the cladding surface. The decrease of heat transfer performance will increase the fuel and cladding temperatures. Therefore, the effect of fuel temperature increase during the heat exposure process has to be analyzed. The analysis was conducted for nominal power of 3400 MWt using COBRA-EN code, by varying the modular oxide thickness of 0, 20, 40, 60, 80, 100 and 120 mm, crud thickness of 0, 10 and 20 mm and black oxide thickness of 0, 10, 20, 30 and 40 mm. For full cycle hot sub-channel condition, the combination of crud thickness of 20 mm and modular oxide thickness of 115 mm give prediction of the peak fuel center line temperature and the peak cladding surface temperature of 1870.73°C and 609.40°C, respectively. However, the oxide layer is predicted only formed on hot sub-channel during BOC (about 40% of full cycle). The results show that the prediction of the peak fuel center line temperature and the peak cladding surface temperature are 1713.18°C and 451.87°C, respectively. Compared to the normal and fresh fuel conditions, the peak fuel center line temperature and the peak cladding surface temperature increase by 6.53% and 29.86%, respectively.Keywords: Fuel temperature, Crud, Oxide layer,  COBRA-EN, AP1000 PREDIKSI TEMPERATUR BAHAN BAKAR AP1000 AKIBAT ADANYA BENTUKAN ENDAPAN DAN LAPISAN OKSIDA. Telah dilakukan penelitian untuk memprediksi temperatur bahan bakar akibat terbentuknya endapan dan lapisan oksida pada permukaan kelongsong sub kanal panas dari reaktor AP1000. Selama operasi reaktor, proses pemindahan kalor and pendinginan terjadi pada permukaan kelongsong. Selama proses pemaparan kalor, endapan dan lapisan oksida terbentuk pada permukaan kelongsong. Berkurangnya pemindahan kalor akan berakibat pada kenaikan temperatur bahan bakar dan kelongsong. Oleh karena itu, dampak kenaikan temperatur bahan bakar selama proses pemaparan kalor perlu dianalisis. Analisis dilakukan pada kondisi daya nominal sebesar 3400 MWt dengan menggunakan kode COBRA-EN, untuk variasi tebal lapisan oksida modular 0, 20, 40, 60, 80, 100 dan 120 mm, variasi tebal endapan 0, 10 dan 20 mm, dan variasi tebal lapisan oksida hitam 0, 10, 20, 30 dan 40 mm. Untuk kondisi sub kanal panas selama siklus penuh, kombinasi tebal 20 mm dan tebal lapisan oksida modular 115 mm memberikan prediksi temperatur puncak sumbu bahan bakar dan temperatur puncak permukaan kelongsong masing-masing sebesar 1870,73°C dan 609,40°C. Akan tetapi, lapisan oksida diprediksi hanya terjadi pada sub kanal panas selama awal siklus (sekitar 40% waktu satu siklus penuh). Hasil perhitungan menunjukkan bahwa prediksi temperatur puncak sumbu bahan bakar dan temperatur puncak permukaan kelongsong masing-masing sebesar 1713,18°C dan 609,40°C. Dibandingkan dengan temperatur bahan bakar pada kondisi segar dan normal, maka temperatur puncak sumbu bahan bakar dan temperatur puncak permukaan kelongsong mengalami kenaikan masing-masing sebesar 6,53% dan 29,86%. Kata kunci: Temperatur bahan bakar, endapan, lapisan oksida, COBRA-EN, AP1000.