Muh. Darwis Isnaini
Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN Kawasan Puspiptek Gedung No. 80, Serpong, Tangerang Selatan

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGARUH GRID PEJARAK DAN NOZZLE TERHADAP PARAMETER TERMOHIDROLIKA PERANGKAT BAHAN BAKAR REAKTOR AP1000 Muh. Darwis Isnaini
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 15, No 3 (2013): Oktober 2013
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (733.472 KB)

Abstract

Grid pejarak berfungsi secara mekanik untuk menambah kekuatan perangkat bahan bakar nuklir (BBN) dari getaran yang ditimbulkan oleh aliran pendingin yang mengalir melalui celah subkanal di dalam perangkat BBN. Oleh sebab itu perlu dilakukan analisis termohidrolika reaktor AP1000 pada kondisi tunak untuk mengetahui pengaruh dipasangnya grid pejarak pada perangkat BBN. Metodologi yang dilakukan melakukan perhitungan penurunan tekanan teras, fluks massa dan koefisien hantaran kalor pada perangkat BBN tanpa grid pejarak dan variasi jumlah grid. Pada analisis subkanal terpanas (SKP) ditekankan pada perbandingan termohidrolika reaktor AP1000 pada kondisi tunak antara SKP tanpa grid pejarak dan SKP dengan 8/2 grid-nozzle, dengan menggunakan kode COBRA-EN. Dibandingkan SKP tanpa grid pejarak, maka pemasangan 8/2 grid-nozzle menyebabkan penurunan tekanan teras meningkat 3,74 kali lipat dari 73,99 kPa menjadi 276,88 kPa, fluks massa pendingin dan koefisien hantaran kalor berfluktuasi pada daerah sekitar grid pejarak, menghasilkan proses pengambilan panas oleh pendingin menjadi lebih efektif. Penurunan tekanan yang semakin besar juga akan berakibat pada nilai fluks kalor kritis (CHF) bertambah besar. Karena daya reaktor tidak berubah, maka fluks kalor cenderung berubah kecuali pada daerah grid, oleh sebab itu nilai DNBR menjadi bertambah besar yang berarti marjin keselamatannya juga bertambah besar. Perhitungan untuk SKP dengan 8/2 grid-nozzle dibandingkan dengan desain diperoleh hasil penurunan tekanan teras sebesar 276,88 kPa (perbedaan 0,68%), temperatur outlet pendingin sebesar 325,54oC (perbedaan 0,21%), fluks kalor maksimum sebesar 1635,16 kW/m2 (perbedaan 0,03%) dan MDNBR sebesar 2,48 (lebih besar 14,06% dari batas minimum korelasi W-3). Penambahan 8/2 grid-nozzle memberikan angka keselamatan yang lebih tinggi.Kata kunci: Pengaruh grid pejarak dan nozzle, analisis termohidrolika, AP1000, COBRA-EN.  One of the spacer grids function was to increase the mechanical strength of fuel assembly from vibration caused by the coolant flow through the subchannels in the fuel assemblies.Therefore, thermal-hydraulics analysis of AP1000 reactor on steady state condition must be carried out to determine the effect of installing the spacer grids in the fuel assemblies. The methodology were making the calculation such as core pressure drops, mass flux and heat transfer coefficient for fuel assemblies without spacer grids and with variation number of spacer grids. The hottest subchannel analysis was focused on the comparative of thermal-hydraulicsof AP1000 reactor on the steady state condition between the hottest subchannel without spacer grids and the hottest subchannel with 8/2 grid nozzle using COBRA-EN code. Compared to the hottest subchannel without spacer grids, the installing 8/2 grid-nozzles on subchannels affected the core pressure drops increased 3.74 times from 73.99 kPa to 276.88 kPa, the coolant mass flux decreased and the heat transfer coefficient fluctuated in the grid spacer region, having an affect on heat transfer process by collant would be more effective. The greater pressure drop would have an affect on increasing the critical heat flux (CHF). Because of the reactor power didn’t change, the heat flux didn’t prone to change, except near the grid spacer region, so the DNBR would increased, its mean that the safety margin would be better. The calculation for the hottest subchannel with 8/2 grid-nozzles compared to the design gave results the core pressure drop was 276.88 kPa (deviation of 0.68%), the coolant outlet temperature was 325.54oC (deviation of 0.21%), the maximum heat flux was 1635.16 kW/m2 (deviation of 0,03%) and the MDNBR was 2.48 (14.06% greater than the W-3 correlation limit). Installing 8/2 grid-nozzles would gave higher safety margin. Keywords: The influence of nozzle and spacer grid, thermal-hydraulic analysis, AP1000, COBRA-EN.
ANALISIS DISTRIBUSI KECEPATAN PENDINGIN DALAM ELEMEN BAKAR TIPE PELAT MENGGUNAKAN METODE CFD UNTUK REAKTOR RISET RSG-GAS Muhammad Subekti; Muh. Darwis Isnaini; Endiah Puji Hastuti
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 15, No 2 (2013): Juni 2013
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (924.104 KB)

Abstract

Eksperimen pengukuran distribusi kecepatan pendingin dalam subkanal elemen bakar reaktor riset RSG-GAS sulit dilakukan karena lebar celah yang sangat kecil dan terletak di dalam elemen bakar. Oleh karena itu diperlukan perhitungan untuk memprediksi distribusi kecepatan pendingin dalam subkanal untuk mengkonfirmasi bahwa keberadaan handle tidak merusak distribusi kecepatan pendingin masuk ke dalam setiap subkanal. Perhitungan ini memerlukan metode CFD yang memperhatikan interior 3 dimensi. Perhitungan distribusi kecepatan pendingin dalam subkanal juga belum pernah dilakukan. Tujuan penelitian ini adalah melakukan investigasi distribusi kecepatan pendingin elemen bakar tipe pelat menggunakan metode CFD 3 dimensi untuk reaktor riset RSG-GAS. Penelitian ini juga sangat diperlukan sebagai bagian dari pengembangan desain termohidrolika elemen bakar untuk reaktor riset inovatif. Pemodelan menggunakan ½ model dalam perangkat lunak Gambit dan perhitungan menggunakan persamaan Turbulen dalam perangkat lunak FLUENT 6.3. Hasil perhitungan kecepatan pendingin tiga dimensi dalam subkanal menggunakan metode CFD lebih rendah sekitar 4,06% dari pada hasil perhitungan satu dimensi karena perhitungan satu dimensi mengabaikan keberadaan handle.Kata kunci: Aliran pendingin, elemen bakar, reaktor riset, kondisi tunak, CFD The measurement experiment for coolant-velocity distribution in the subchannel of fuel element of RSG-GAS research reactor is difficult to be carried out due to too narrow channel and subchannel placed inside the fuel element. Hence, the calculation is required to predict the coolant-velocity distribution inside subchannel to confirm that the handle presence does not ruin the velocity distribution into every subchannel. This calculation utilizes CFD method, which respect to 3-dimension interior. Moreover, the calculation of coolant-velocity distribution inside subchannel was not ever carried out. The research object is to investigate the distribution of coolant-velocity in plattyped fuel element using 3-dimention CFD method for RSG-GAS research reactor. This research is required as a part of the development of thermalhydraulic design of fuel element for innovative research reactor as well. The modeling uses ½ model in Gambit software and calculation uses turbulence equation in FLUENT 6.3 software. Calculation result of 3D coolant-velocity in subchannel using CFD method is lower about 4,06% than 1D calculation result due to 1D calculation obeys handle availability. Keywords: Coolant flow, fuel element, research reactor, steady state, CFD