Hendro Tjahjono
Pusat Teknologi dan Keselamatan Reaktor Nuklir - BATAN

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT Hendro Tjahjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 3 (2015): Oktober 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (571.919 KB) | DOI: 10.17146/tdm.2015.17.3.2323

Abstract

ABSTRACT EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT. AP1000 reactor is a nuclear power plant generation III+ 1000 MWe which apply passive cooling concept to anticipate accidents triggered by the extinction of the entire supply of electrical power or Station Black Out (SBO). In the AP1000 reactor, decay heat disposal mechanism conducted passively through the PRHR-IRWST and subsequently forwarded to the reactor containment. Containment externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall. The mechanism of evaporation of water into the air outside is strongly influenced by the conditions of humidity and air temperature. The purpose of this study was to determine the extent of the influence of the air condition on cooling capabilities of the AP1000 containment. The method used is to perform simulations using Matlab-based analytical calculation model capable of estimating the power of heat transfered. The simulation results showed a decrease in power up to  5% for relative humidity rose from 10% to 95%, while the variation of air temperature of 10 °C to 40°C, the power will decrease up to 15%. It can be concluded that the effect of air temperature increase is much more significant in lowering the containment cooling ability compared with the increase of humidity. Keywords: containment cooling, AP1000, air condition, SBO   ABSTRAK PENGARUH KONDISI UDARA TERHADAP KINERJA PENDINGINAN SUNGKUP AP-1000 DALAM KECELAKAAN STATION BLACK OUT. Reaktor AP-1000 merupakan PLTN generasi III+ berdaya 1000 MWe yang menerapkan konsep pendinginan pasif untuk mengantisipasi terjadinya kecelakaan yang dipicu oleh padamnya seluruh suplai daya listrik atau dikenal dengan Station Black Out (SBO). Pada reaktor AP-1000, mekanisme pembuangan kalor peluruhan dilakukan secara pasif melalui PRHR yang diteruskan ke IRWST dan selanjutnya pada sungkup reaktor. Sungkup didinginkan secara eksternal melalui konveksi alamiah pada celah udara dan melalui penguapan air pendingin yang diguyurkan di permukaan luar dinding sungkup. Mekanisme penguapan air ke udara luar sangat dipengaruhi oleh kondisi kelembaban dan temperatur udara. Tujuan dari penelitian ini adalah untuk mengetahui sejauh mana pengaruh kondisi udara tersebut terhadap kemampuan pendinginan dari sungkup AP1000. Metode yang digunakan adalah dengan melakukan simulasi menggunakan model perhitungan analitis berbasis Matlab yang mampu mengestimasi daya kalor yang dievakuasi. Hasil simulasi menunjukkan adanya penurunan daya hingga 5% untuk kelembaban relatif naik dari 10% hingga 95%, sedangkan untuk variasi temperatur udara dari 10°C hingga 40°C, daya akan menurun hingga 15%.  Dapat disimpulkan bahwa pengaruh kenaikan temperatur udara jauh lebih signifikan dalam menurunkan kemampuan pendinginan sungkup dibandingkan dengan naiknya kelembaban. Kata kunci: pendinginan sungkup, AP1000,  kondisi udara, SBO
INVESTIGATION OF RDE THERMAL PARAMETERS CHANGES IN RESPONSE TO LONG-TERM STATION BLACK OUT Hendro Tjahjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 2 (2017): Juni 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3363.532 KB) | DOI: 10.17146/tdm.2017.19.2.3258

Abstract

Due to long-term station black out (SBO) of the RDE (Experimental Power Reactor), the residual heat from the core will be removed to a residual heat removal system (RHRS). The objective of this study is to know the transient characteristic of RDE thermal parameters in response to the loss of residual heat removing ability for long-term. To achieve this objective, an analysis model of reactor thermal parameters changes during SBO, using Matlab program to simulate heat transfer equations of conduction, convection and radiation has been performed. Using this program, the changes of RDE thermal parameters until 800 hours after reactor trip have been analyzed. It is concluded that, in long-term SBO condition, the reactor is still safe with the maximum core temperature of 1140°C, which is still far under the safety limit of 1600°C as stated in the design criteria. More attentions are needed to be taken with the increasing of concrete temperature up to 600°C when the water storage is empty. Therefore, the availability of water in the RHRS shall absolutely be maintained.Keywords: experimental power reactor, residual heat removal, transient, Matlab. INVESTIGASI PERUBAHAN PARAMETER TERMAL RDE PADA KONDISI KEHILANGAN CATU DAYA LISTRIK DALAM JANGKA PANJANG. Akibat kehilangan catu daya listrik luar pada Reaktor Daya Eksperimental (RDE), panas sisa dari reaktor dibuang ke suatu sistem pembuang panas sisa. Penelitian ini bertujuan untuk mengetahui karakteristik transien parameter termal RDE ketika terjadi kegagalan pembuangan kalor sisa tersebut dalam jangka panjang. Untuk mencapai tujuan tersebut telah disusun model analisis perubahan parameter termal reaktor ketika terjadi Station Black Out (SBO) menggunakan pemrograman Matlab dengan melibatkan persamaan-persamaan perpindahan kalor secara konduksi, konveksi dan radiasi. Dengan menggunakan program ini perubahan parameter termal RDE hingga 800 jam setelah reaktor trip telah dianalisis. Disimpulkan bahwa pada kondisi SBO dalam jangka panjang tersebut, reaktor masih tetap aman dengan temperatur maksimum teras sebesar 1140 °C, yaitu masih jauh di bawah batas aman 1600 °C yang telah ditetapkan dalam kriteria desain. Perlu diperhatikan adanya peningkatan temperatur beton hingga 600 °C jika air pendingin sudah habis. Oleh karena itu, ketersediaan air pendingin di sistem pembuang panas sisa mutlak harus dijaga.Kata kunci: reaktor daya eksperimental, pembuang panas sisa, transien, Matlab.
INVESTIGASI TRANSIEN TEKANAN DAN TEMPERATUR SUNGKUP REAKTOR AP1000 DALAM KECELAKAAN SBO DENGAN SET-POINT TEKANAN PENGGUYURAN BERBEDA Hendro Tjahjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 1 (2015): Pebruari 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (245.845 KB) | DOI: 10.17146/tdm.2015.17.1.2233

Abstract

Reaktor AP1000 menerapkan konsep pendinginan eksternal untuk mengantisipasi naiknya tekanan akibat terjadinya kecelakaan kehilangan seluruh catu daya listrik atau Station Black Out (SBO). Mekanisme pembuangan kalor peluruhan secara pasif dilakukan melalui Passive Residual Heat Removal System (PRHRS) yang diteruskan ke In-containment Refueling Water Storage Tank (IRWST) dan selanjutnya pada sungkup reaktor. Sungkup didinginkan secara eksternal melalui konveksi alamiah pada celah udara dan melalui penguapan air pendingin yang diguyurkan di permukaan luar dinding sungkup ketika tekanan sungkup mencapai 1,7 bar sesuai set-point yang diterapkan. Dengan mekanisme ini, tekanan akan naik sampai mencapai nilai maksimum tertentu dan kemudian turun kembali ketika pendinginan sungkup sudah mulai efektif. Tujuan dari penelitian ini adalah untuk mengetahui sejauh mana pengaruh perbedaan set-point tekanan pengguyuran tersebut terhadap tekanan dan temperatur maksimum yang dicapai. Metode yang digunakan adalah dengan melakukan simulasi menggunakan model perhitungan analitik berbasis Matlab-07 pada kondisi transien yang mampu mengestimasi daya kalor yang dievakuasi, tekanan dan temperatur di dalam sungkup terhitung mulai terbentuknya uap di dalam sungkup. Hasil simulasi menunjukkan pola transien tekanan dan temperatur yang naik hingga maksimum dan turun kembali ke suatu nilai yang relatif tetap. Dengan variasi set-point mulai dari 1,7 bar hingga 5 bar, tekanan maksimum yang dicapai meningkat dari 3,5 bar hingga 5 bar dan temperatur maksimum dari 117 °C hingga 125 °C. Dapat disimpulkan bahwa di AP 1000, dengan naiknya set-point tekanan dimulainya pendinginan eksternal melalui pengguyuran air berpengaruh menaikkan tekanan dan temperatur maksimum yang terjadi akibat SBO. Kata kunci: Transien tekanan, set-point pendinginan eksternal sungkup, AP1000, SBO.  AP1000 reactor applying external cooling concept to anticipate the increase in pressure due to Station Black Out (SBO). Disposal mechanism of decay heat conducted through the Passive Residual Heat Removal System (PRHRS) to In-containment Refueling Water Storage Tank (IRWST) and subsequently forwarded to the reactor containment. Containment is externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall when the pressure attaints 1.7 bars according to the applied pressure set-point. With this mechanism, the pressure will increase until it reaches certain maximum value and then decrease when containment cooling already begun effectively. The purpose of this study was to determine the effect of the set-point to the maximum pressure and temperature reached. The utilized method is to perform simulations using Matlab-07 model of analytical calculations based on a transient state that is capable of estimating the power of heat evacuated and the pressure in the containment. The simulation results show the pattern of pressure and temperature transient rises to a maximum and drops back to a value that is relatively constant. With the set-point variation ranging from 1.7 bars to 5 bars, the maximum pressure varies from 3.5 bars to 5 bars and the maximum temperature varies from 117 °C to 125 °C. It can be concluded that with increasing the set-point pressure of starting the external cooling with water, the maximum pressure and temperature increase. Keywords: Transient pressure, containment external cooling set-point, AP1000, SBO.