Claim Missing Document
Check
Articles

Found 3 Documents
Search

THERMAL-HYDRAULIC ANALYSIS OF SMR WITH NATURALLY CIRCULATING PRIMARY SYSTEM DURING LOSS OF FEED WATER ACCIDENT Susyadi Susyadi
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 18, No 3 (2016): Oktober 2016
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (605.615 KB) | DOI: 10.17146/tdm.2016.18.3.2670

Abstract

ABSTRACT Small Modular Reactors (SMRs) have several advantages over conventional large reactors. With integral and simplified design, application of natural laws for safety system, and lower capital cost this reactor is very suitable to be deployed in Indonesia.  One of SMR designs being developed implements natural driving force for its primary cooling system. With such innovative approach, it is important to understand safety implication of the design for all operating circumstances. One of conditions need to be investigated is the loss of feed-water (LoFW) accident. In this study, thermal-hydraulic performance of the SMR with naturally circulating primary system during LoFW accident is analysed. The purpose is to investigate the characteristics of flow in primary system during the accident and to clarify whether the naturally circulating coolant  is adequately capable to transfer the heat from core in order to maintain safe condition under considered scenario. The method used is by representing the reactor system into RELAP5 code generic models and performing numerical simulation. Calculation result shows that following the initiating event and reactor trip, primary system flow becomes significantly fluctuated and coolant temperature decreases gradually, while in secondary side steam quality descends into saturated. The primary flow slows down from ~711 kg/s to ~263 kg/s and starts to increase up again at t= ~46 seconds. At the slowest point, fuel centerline and coolant temperatures were ~565 K and ~554 K, showing that temperatures of  the fuel and coolant are still below its design limit and saturation point, respectively. This fact reveals that throughout transient the two main thermal hydraulic parameters stay in acceptable values so it could be concluded that under LoFW accident the SMR with naturally circulating primary system is in safe condition. Keywords: SMR, loss of feed water, natural circulation, reactor safety, RELAP5  ABSTRAK Reaktor daya kecil modular (SMR) memiliki beberapa keunggulan dibanding reaktor daya besar konvensional. Dengan disain yang lebih sederhana dan terintegrasi, penerapan hukum alamiah untuk sistem keselamatannya dan biaya modal yang rendah, reaktor ini sangat cocok untuk dibangun di Indonesia. Salah satunya disain SMR yang sedang dikembangkan menerapkan gaya penggerak alami untuk sistim pendingin primernya. Dengan disain seperti itu, adalah sangat penting untuk memahami implikasinya terhadap aspek keselamatan pada seluruh kondisi operasi. Salah satu yang perlu diinvestigasi adalah kecelakaan kehilangan air umpan (LoFW). Pada studi ini, dilakukan analisis kinerja thermal hidrolik SMR yang menggunakan sistim pendinginan primer sirkulasi alam saat kecelakaan LoFW. Tujuannya adalah untuk menginvestigasi karakteristik aliran sistem primer saat kecelakaan LoFW dan untuk memastikan apakah aliran sirkulasi alam cukup untuk memindahkan panas dari teras guna menjaga kondisi tetap aman selama kecelakaan tersebut. Metoda yang digunakan adalah dengan merepresentasikan sistem reaktor ke dalam model-model generik program RELAP5 dan melakukan simulasi numerik. Hasil perhitungan menunjukkan bahwa setelah kejadian pemicu dan trip reaktor, pada sisi primer laju alirnya berfluktuasi secara signifikan dan temperatur pendinginnya menurun secara bertahap sedangkan  pada sisi sekunder kondisi uap berubah menjadi uap jenuh. Laju alir turun dari ~711 kg/detik menjadi ~263 kg/detik sebelum kembali naik lagi pada t=~46 detik. Saat laju alir di titik terendah, temperatur pusat bahan bakar dan fluida pendingin adalah sekitar  ~565 K dan  ~554 K, yang menujukkan bahwa temperatur bahan bakar masih jauh di bawah batas disain dan temperatur fluidanya juga berada di bawah titik saturasi. Keadaan ini menunjukkan bahwa saat transien kedua parameter utama termohidrolik reaktor tetap dalam kondisi yang dapat diterima sehingga dapat disimpulkan  bahwa saat  kecelakaan kehilangan air umpan, SMR dengan sistim primer sirkulasi alam tetap dalam kondisi aman. Kata kunci: SMR, kehilangan air umpan, sirkulasi alamiah, keselamatan reaktor, RELAP5 
SIMULATION OF FEED WATER TEMPERATURE DECREASE ACCIDENT IN NUSCALE REACTOR Susyadi Susyadi
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 20, No 3 (2018): Oktober 2018
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (549.46 KB) | DOI: 10.17146/tdm.2018.20.3.4657

Abstract

Study on thermal hydraulic behavior of the NuScale reactor during secondary system malfunction that causes a feed water temperature decrease has been conducted using RELAP5 code. This study is necessary to investigate the performance of safety system and design in dealing with an accident. The method used involves simulation of reactor transient through numerical modeling and calculation in RELAP5 code covering primary and secondary system, including the decay heat removal system (DHRS). The investigation focuses on the flow and heat transfer characteristics that occurs during the transient. The  calculation result shows that at the beginning, core power increases up to trip set point of 200 MW which is driven by positive feedback reactivity of coolant overcooling and automatic control rod bank adjustment. Meanwhile, the core exit coolant temperature increases up to 600 K. and primary system circulation flow rate speeds up to 556 kg/s. After that, the reactor trips and power drops sharply, followed by opening of DHRS valves and closing of steam line and feed water isolation valves. The simulation shows that, the DHRS are capable to transfer decay heat to the reactor pool and as a result the primary system temperature and pressure decreases. The reactor could stay in safe shutdown state afterward.Keywords: NuScale, RELAP5, feed water, decay heat, simulation SIMULASI KECELAKAAN PENURUNAN TEMPERATUR AIR UMPAN DI REACTOR NUSCALE. Studi tentang perilaku termalhidraulik reaktor NuScale saat terjadi kerusakan sistem sekunder yang menyebabkan penurunan suhu air umpan telah dilakukan dengan menggunakan kode RELAP5. Penelitian ini penting untuk menyelidiki kinerja disain dan sistem keselamatan reaktor dalam menghadapi kecelakaan. Metoda yang digunakan melibatkan simulasi transien reaktor melalui pemodelan dan kalkulasi numerik dengan RELAP5 yang meliputi sistem primer dan sekunder serta sistem pembuangan panas peluruhan (DHRS). Investigasi berfokus pada aliran dan karakteristik perpindahan panas yang terjadi selama transien. Hasil perhitungan menunjukkan bahwa pada awalnya, terjadi peningkatan daya teras hingga mencapai titik seting pemadaman (trip) 200 MW, sebagai akibat dari umpan balik reaktivitas positif dari pendinginan fluida sistem primar dan respon otomatis penaikan batang kendali. Sementara itu, suhu keluaran teras meningkat menjadi 600 K serta laju aliran sirkulasi sistem primer meningkat menjadi 556 kg/s. Setelah itu, reaktor padam dimana daya menurun tajam dan diikuti pembukaan katup DHRS dan penutupan katup pada jalur uap dan air umpan. Simulasi ini menunjukkan bahwa, DHRS mampu membuang panas ke kolam reaktor, dimana suhu serta tekanan sistem primer menurun. Reaktor tetap dalam keadaan shutdown aman sesudahnya.Kata kunci: NuScale, RELAP5, air umpan, panas peluruhan, simulasi
Readiness of National Industries Infrastructure to Support the RDE Programme in Indonesia Dharu Dewi; Arief Tris Yuliyanto; Moch Djoko Birmano; Rr Arum Puni; Rijanti Rijanti; Mudjiono Mudjiono; Taswanda Taryo; Susyadi Susyadi; Rustama Rustama; Sriyana Sriyana
Journal of Applied Sciences and Advanced Technology Vol 3, No 2 (2020): Journal of Applied Sciences and Advanced Technology
Publisher : Faculty of Engineering Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24853/jasat.3.2.65-74

Abstract

Nuclear Power Plant (PLTN) is one of the options to meet electricity for society and industry. BATAN has developed an Experimental Power Reactor (RDE) design which is one type of Non-Commercial Power Reactor (RDE) is a HTGR (High Temperature Gas-cooled Reactor) NPP with 10 MWth Pebble Bed Reactor (PBR) technology, and is used for non-electric electricity. This reactor type can generate electricity and heat. The development of RDE in Indonesia requires 19 aspects of nuclear infrastructure. One aspect of them is the involvement of national industries. The RDE development is expected to involve several national industries that can participate in supplying government goods and services. The purpose of this research is to determine the capability and readiness of the national industrial infrastructure to be able to participate in the development of RDE in Indonesia. The methodology used is literature review, technical surveys or visits, and technical consultations with key persons from industries. The study results conclude that the civil construction industries and the EPC industries have the readiness and ability to be able to build RDE building especially for non-nuclear parts. The Architect Engineering have the potential and capability for the RDE project management, engineering and Design development. The mechanical industries have the potential and capability to produce turbines, generators, condensers and heat exchangers. The electrical industries have the potential and capability to supply electrical components for the electrical system, such as Switchgear, main transformers, distribution transformers, generators, conductors, power cables, connectors and electrical panels. The Instrumentation & Control industries have the potency and capability to supply I&C products such as instrumentation cable, instrumentation communication system, temperature controller, etc. The output expected from this research is the readiness of nuclear infrastructure, especially the national industries for the supply of non-nuclear components.