Claim Missing Document
Check
Articles

Found 3 Documents
Search

Kinetika Reaksi Pirolisis Enceng Gondok Mitha Puspitasari; Sutijan Sutijan; Arief Budiman
Eksergi Vol 13, No 1 (2016)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v13i1.1436

Abstract

Enceng gondok merupakan tanaman pengganggu dalam ekosistem air karena pertumbuhannya yang sangat cepat sehingga perlu dipikirkan cara untuk pemusnahan tanaman ini. Namun enceng gondok merupakan biomassa yang mempunyai kandungan hemiselulosa, selulosa dan lignin yang tinggi. Pirolisis adalah metode yang tepat untuk mengubah biomassa yang diproses secara termal menjadi produk yang bernilai. Pirolisis merupakan proses degradasi termal untuk mengahasilkan bio-char, bio-oil dan bio-gas tanpa adanya oksigen. Tujuan penelitian ini adalah untuk mencari suhu optimum dari proses pirolisis dan mencari parameter kinetika untuk membantu peneliti dalam merancang reaktor dan memahami reaksi yang terjadi. Model yang diusulkan untuk mempresentasikan reaksi pirolisis enceng gondok adalah Compatting model. Hasil dari penelitian ini menunjukkan bahwa suhu 600°C merupakan suhu optimum untuk mengahasilkan bio-oil. Dengan menggunakan program matlab konstanta kinetika reaksi pada pembentukan gas pada proses pirolisis enceng gondok adalah  k1=3,4997exp-14069,21/RTmen-1,  konstanta kinetika reaksi pembentukan bio-oil adalah k2=0,3430exp-3059,451/RTmen-1  dan konstanta kinetika reaksi pembentukan char adalah k3=0,2526 exp-2313,395/RT men-1.
SIMULASI PENGARUH STEAM-TO-CARBON RATIO DAN TUBE OUTLET TEMPERATURE TERHADAP REAKSI STEAM REFORMING PADA PRIMARY REFORMER DI PABRIK AMONIAK Muhammad Natsir Hakiki; Muslikhin Hidayat; Sutijan Sutijan
ROTOR Vol 10 No 2 (2017)
Publisher : Jurusan Teknik Mesin Fakultas Teknik Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (555.474 KB) | DOI: 10.19184/rotor.v10i2.6393

Abstract

Steam reforming, the reaction in Ammonia plant between natural gas and H2O becoming H2 and CO/CO2, is occurred in Primary Reformer and being completed in Secondary Reformer. In Primary Reformer, the reaction commonly occurred at 450-800oC and 36 bars. The endothermic reaction occurred in Ni-based catalyst inside the tube. The heat for this reaction came from the heat of reaction of combustion in the furnace (outer-tube). The flow of H2 will increase along with the increasing flow of the feed gas and the heat transferred from outer-tube to inner-tube. In the other side, there will be energy increasing. So there’s a need of optimization. The need of energy influenced by many parameters e.g. Steam-to-Carbon Ratio (S/C) and Tube Outlet Temperature (Tout) of Primary Reformer. Commonly S/C is 3.20 and maximum Tout is 800oC. That’s why; optimization was conducted by energy calculation at various S/C and Tout. Firstly, reaction and heat transfer in inner-tube and outer-tube were modeled, so we can get the data of temperature and gas composition outlet inner-tube. Then, energy consumption which came from process gas, fuel gas and steam generation was calculated. The range of S/C 2.70-3.70 and Tout 700oC-800oC were chosen for the simulation. The simulation result shown that the need of energy per kmol-H2 outlet Primary Reformer at S/C 3.20 and Tout 800oC was 573.11 MJ/kmol-H2. The need of energy per kmol-H2 outlet Primary Reformer at S/C 3.50 and Tout 780oC (20oC below common Tout) was 573.01 MJ/kmol-H2. It means that decreasing Tout (for tube lifetime increasing) must be compensated with increasing S/C. Keywords: Primary Reformer, Steam to Carbon Ratio, Tube Outlet Temperature
Synthesis of Ternary Homogeneous Azeotropic Distillation Sequences: 2. Flowsheet Identification Sutijan Sutijan; Megan Jobson; Robin Smith
ASEAN Journal of Chemical Engineering Vol 13, No 1 (2013)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1102.008 KB) | DOI: 10.22146/ajche.49724

Abstract

This paper presents a systematic methodology for flowsheet generation for separating binary azeotropic mixtures using homogeneous azeotropic distillation. A new classification system for ternary mixtures using ‘standard distillation line maps’ defined in Sutijan et al. (2012) is employed. The new characterisation system is able to link candidate entrainers to flowsheet structures which can facilitate the separation. The sequences considered include pressure-swing distillation, two and three-column flowsheets with or without boundary crossing and the use of single and double-feed columns. For a given ternary mixture, suitable flowsheet structures that can facilitate the separation can be automatically identified. The method is illustrated using examples.