Tatik Wardiyati
Faculty of Agriculture, Brawijaya University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Accumulation of Pb in Chinese cabbage (Brassica rapa) and bean (Phaseolus vulgaris) from the use of fertilizer and pesticide Yekti Sri Rahayu; Tatik Wardiyati; Moch Dawam Maghfoer
Journal of Degraded and Mining Lands Management Vol 7, No 3 (2020)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2020.073.2139

Abstract

A series of experiments in a plastic house were carried out to test the accumulation of Pb metal in Chinese cabbage and bean plants from the application of several Pb sources. The research method used was a split-plot design with the main plot was the application of Pb source consisting of A1 = pesticide (99 mg Pb/kg), A2 = fertilizer (21 mg Pb/kg), A3 = Pb(NO3)2 (50 mg Pb/kg) and A4 = control (without the application of Pb), and the subplot was the vegetable crops consisting of B1 = Chinese cabbage (Brassica rapa) and B2 = bean (Phaseolus vulgaris). The results of the experiment showed that the Pb content in the shoots of Chinese cabbage and bean plants that were previously sprayed with pesticide was significantly 231.02% (Chinese cabbage) and 257.18% (bean) higher than control plants. Meanwhile, the largest Pb concentrations in the roots of Chinese cabbage and bean plants were obtained in plants applied with Pb(NO3)2. Compared to the control treatment, there was an increase in Pb concentration by 206.32% in the roots of Chinese cabbage plant and by 310.03% in the roots of bean plant which were applied with Pb(NO3)2. Pb concentrations of Chinese cabbage which were given fertilizer increased by 14.86% in the shoot and 30.59% in the root, while those in bean increased by 10.74% in the shoot and 98.77% in the root. Pb concentrations in Chinese cabbage and beans that were given fertilizer were not significantly different from control plants. These results indicate that the application of pesticide and fertilizer containing Pb results in Pb accumulation in the plant shoots and roots as well as in the soil.
The use of citric acid and NPK fertilizer to enhance phytoextraction of nickel by Bajo starfruit plant (Sarcotheca celebica Veldk.) Naima Haruna; Tatik Wardiyati; Moch Dawam Maghfoer
Journal of Degraded and Mining Lands Management Vol 7, No 3 (2020)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2020.073.2123

Abstract

Bajo starfruit is a wild plant that commonly grows in nickel mining areas and it is known to have the ability to take up Ni metal from the soil, even though its Ni uptake ability is still relatively low. The objective of this study was to explore the effect of the application of citric acid and NPK fertilizer on the ability of Bajo starfruit plant in phytoextraction of Ni from post nickel mining land. Citric acid as a ligand is expected to enhance the availability of Ni in the soil so that Ni uptake by plants increases, while NPK fertilizer is expected to enhance crop biomass production. The treatments tested were combinations of four doses of citric acid (0, 1, 2 and 3 g of citric acid/kg of soil) with two doses of NPK fertilizer (0, and 1.33 g/kg of soil). Eight treatments were arranged in a factorial randomized block design with four replications. The results showed that the application of NPK fertilizer without citric acid increased the number of leaves and dry weight of plants. After the growth of Bajo starfruit for 25 weeks, the application of 3 g citric acid/kg of soil without application of NPK fertilizer reduced the total soil Ni from 8926 ppm to 2400 ppm i.e.73.11%.  Application of 2 g citric acid/kg of soil and 1.33 g NPK fertilizer/kg of soil resulted in Ni uptake by 118.18 mg/plant or increased by 38.61% compared to control. Application of 2 g citric acid/kg of soil without application of NPK fertilizer increased the BCF value of Bajo starfruit for nickel from 0.032 (control) to 0.035. However, treatments without the application of citric acid and fertilizer resulted in a higher TF value (13.9).