Claim Missing Document
Check
Articles

Found 4 Documents
Search

The use of volcanic ash from the eruption of Mount Kelud in East Java for improving yield of sweet potato grown on a sandy soil H Melsandi; S Prijono
Journal of Degraded and Mining Lands Management Vol 2, No 4 (2015)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (250.25 KB) | DOI: 10.15243/jdmlm.2015.024.409

Abstract

The purpose of this study was to explore the effect of volcanic ash from the eruption of Mount Kelud and compost on the soil properties and production of sweet potato on a sandy soil. The treatments of this study were (a) a combination of and volcanic ash with the proportion of 100: 0, 90:10, 80:20, and 70:30 (% weight), (b) the addition of compost (2.5 and 5 t / ha), and (c) two varieties of sweet potato (Manohara and Ayamurazaki). The soil used in this study is the topsoil (0-30 cm) Psament or sandy Entisol obtained from sweet potato cultivation location in Sumber Pasir Village of Pakis District, South Malang. Ten kilograms of planting medium (soil + volcanic ash) for each treatment was placed in a 15 kg plastic pot. Sixteen treatments arranged in a factorial completely randomized design with three replications.  The results showed that application of Mount Kelud volcanic ash and compost was able to improve soil permeability, soil pH, organic C, and K-total, but did not significantly affect total N content, available P and K total land. The highest fresh tuber weights of 373.51 g / plant or 19.92 t / ha and 393.09 g / plant or 20.96 t / ha for Manohara and Ayumurazaki varieties, respectively, were observed in the treatment of 10% volcanic ash + 5 t compost / ha. The carbohydrate content of Manohara variety was higher than that of Ayamurazaki variety at each treatment. The highest carbohydrate content of the Manohara variety  (23.52%)  was obtained through application of  20% volcanic ash + 2.5 t compost/ha, while that of the Ayamurazaki variety (22.42%) was obtained through application of 30% volcanic ash + 2.5 t/ha.
The effect of motor vehicle emission towards lead (Pb) content of rice field soil with different clay content C C Wati; S Prijono; Z Kusuma
Journal of Degraded and Mining Lands Management Vol 3, No 1 (2015)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (285.194 KB) | DOI: 10.15243/jdmlm.2015.031.453

Abstract

Motor vehicle gas emission contains lead (Pb) which is a hazardous and toxic substance. Agricultural land, especially rice field, which is located nearby roads passed by many motor vehicle, are susceptible to the accumulation of Pb. If Pb is permeated by plants cultivated in the rice field, it will be very hazardous for humans as they are the final consumers. Hence, it is essential to identify Pb content of rice-field soil initiated by motor vehicle gas emission. This study was aimed to identify the effects of motor vehicle density, the distance between rice-field and road, and the clay content of soil towards Pb content of soils in Blitar and Ngawi Regencies of East Java. The method used for the study was survey method managed by using three-factor nested design with three replicates. The results of this study showed that motor vehicle density and the distance of rice field to road provide significant affected the total of Pb content of soil. However, the dissemination pattern of Pb in the soil was irregular due to the factors of climate and environment. Before Pb reached soil surface, Pb was spread out in the air due to the effect of temperature, wind velocity, vehicle velocity, size of vehicle, and road density. Consequently, the location with low motor vehicle density and positioned faraway to the road had higher total rate of Pb than the location with high motor vehicle density and positioned nearby the road. Clay content affected the total rate of Pb content as much as 37%, every 1% increase of clay content increased the total rate of Pb as much as 0.08 mg/kg.
The changes of soil physical and chemical properties of Andisols as affected by drying and rewetting processes A Rahayu; S R Utami; S Prijono
Journal of Degraded and Mining Lands Management Vol 3, No 1 (2015)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (357.289 KB) | DOI: 10.15243/jdmlm.2015.031.439

Abstract

Soils from a toposequence in northern slope of Mt. Kawi, Malang were sampled to study the effect of amorphous content on the irreversible drying properties of the soils. Water, clay, organic-C, and available P contents were measured at field capacity (KL), after air-drying for 2 days (K2) , air-drying for 4 days (K4), oven-drying at 40 °C for 1 day (Ko), as well as after rewetting K2 (KL2); K4 (KL4), and Ko (KLo). The results showed that water, clay, organic-C, and available P contents changed after drying and rewetting processes. Drying process decreased clay content but increased available P content. Clay and water content of the rewetted samples, especially after oven-drying (KLo) were lower than at initial field capacity (KL), as indication of irreversible properties. In contrast, available P and organic-C content were higher after drying-rewetting processes. Variation of water, clay, organic-C, and available P contents after drying-rewetting processes were significantly affected by respected properties at initial field capacity. These properties tended to change in accordance to Alo+½Feo content. The effect of Alo+½Feo content, however was statisticaly detected only on the water content at KLo (rewetted after oven-dried) and on organic C content at KL2 and KL4 (rewetted after air-dried for 2 and 4 days).  
The potential of Arachis pintoi biomass to improve quality of soil continuously used for cassava cropping N Muddarisna; S Prijono
Journal of Degraded and Mining Lands Management Vol 1, No 2 (2014)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (73.255 KB) | DOI: 10.15243/jdmlm.2014.012.083

Abstract

A field experiment that was aimed to elucidate the effects of application of Arachis pintoi biomass and animal dung on quality of soil continuously used for  cassava cropping was conducted at Jatikerto Village, Kromengan District of Malang Regency. Eight treatments tested were 100% NPK inorganic fertilizer, 100 kg N Arachis pintoi/ha, (3) 100 kg N chicken dung / ha, 100 kg N cow dung /ha, 100 kg N goat dung /ha, 100 kg N Arachis pintoi + chicken dung /ha, 100 kg N Arachis pintoi + cow dung /ha, and 100 kg N Arachis pintoi + goat dung /ha. Monitoring quality of top soil (0-20 cm) was carried out at planting time and 3 months after planting. Soil samples were collected and analyzed for chemical and physical properties. Yield of cassava was measured at 6 months after planting. Results of this study showed that application of organic fertilizer in forms of green manure (Arachis pintoi biomass), and animal dung significantly improved physical and chemical properties of soil. Application of 50% NPK combined with organic manures did not significantly gave different tuber yield with that of 100% NPK.