Akhmad Z. Abidin
Department of Chemical Engineering, Faculty of Industrial Technology Institut Teknologi Bandung

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Development of Wet Noodles Based on Cassava Flour Akhmad Z. Abidin; Cinantya Devi; A. Adeline
Journal of Engineering and Technological Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2013.45.1.7

Abstract

Cassava is one of Indonesia's original commodities and contains good nutrition and has high productivity and a relatively low price. Cassava flour has a high potential as a substitute for imported wheat flour that is widely used in noodle production. The main purpose of this research was to develop wet noodles from cassava flour that can compete with wet noodles from wheat flour. The research consisted of experiments with several variations of composition and production method for producing cassava flour-based wet noodles. The best result was then examined for its nutritional value, economical value, and market response, and also a comparison was made between the prepared wet noodles and the standard noodles made from wheat flour. The analysis was based on five characteristics: taste, texture, chewiness, aroma, and appearance. Relations between these characteristics with composition, materials used, and methods applied are discussed. The developed cassava flour-based wet noodle meets physical, nutritional, and economical standards. Raw materials of the noodle were cassava flour and a wheat flour composite with a 5:1 ratio, egg, gluten, soda-ash, water, and vegetable oil, while the process was completed in multiple stages. Market response showed that the cassava flour-based wet noodles were 80% similar to wheat-flour noodles.
Utilization of Cassava Starch in Copolymerisation of Superabsorbent Polymer Composite (SAPC) Akhmad Z. Abidin; Tiara Puspasari; Hafis Pratama Rendra Graha
Journal of Engineering and Technological Sciences Vol. 46 No. 3 (2014)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2014.46.3.4

Abstract

Cassava starch was used as the main chain in the copolymerization of a superabsorbent polymer composite (SAPC) based on acrylic acid and bentonite. The SAPC was synthesized through graft polymerization using nano-sized bentonite as reinforcement. The variables in this experiment were: bentonite concentration, acrylic acid to starch weight ratio, concentration of initiator, and cross linker. The product was characterized using FTIR, SEM and TGA-DSC. The results show that the polymerization reactions involved processes of incorporating starch chains as polymer backbone and grafting acrylic acid monomers onto it. The use of cassava starch in the polymerisation produced a very short reaction time (10-15 minutes), which led to SAPC production with higher efficiency and lower cost. Bentonite interacts with monomers via hydrogen and weak bonding, thus improving the thermal properties of the product. The maximum absorbance capacity obtained was at an acrylic acid to starch weight ratio of 5 and a concentration of initiator, cross linker and bentonite of 0.5, 0.05 and 2 weight percent, respectively. The product is suitable for agricultural and medical applications as well as common superabsorbent polymer applications.