Claim Missing Document
Check
Articles

Found 2 Documents
Search

Application of Nonlinear Finite Element Analysis on Shear-Critical Reinforced Concrete Beams Asdam Tambusay; Priyo Suprobo; Benny Suryanto; Warren Don
Journal of Engineering and Technological Sciences Vol. 53 No. 4 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.4.8

Abstract

This paper presents the application of a smeared fixed crack approach for nonlinear finite element analysis of shear-critical reinforced concrete beams. The experimental data was adopted from tests undertaken on twelve reinforced concrete beams by Bresler and Scordelis in 1963, and from duplicate tests undertaken by Vecchio and Shim in 2004. To this end, all beams were modeled in 3D using the software package ATENA-GiD. In the modeling, the nonlinear behaviors of the concrete were represented by fracture-plastic constitutive models, which were formulated within the smeared crack and crack/crush band approaches. The applicability of nonlinear analysis was demonstrated through accurate simulations of the full load-deflection responses, underlying mechanisms, crack patterns, and failure modes of all 24 beams. Detailed documentation of the results is presented to demonstrate the potential and practical value of nonlinear finite element analysis in providing an informed assessment of the safety and performance of reinforced concrete structures.
Modelling of Shear-critical, Lightly Reinforced Concrete T-beams with Externally Bonded CFRP using ATENA Science Fillbert Hanselly Njoko; Asdam Tambusay; Andrew Jamieson; Benny Suryanto; Priyo Suprobo
Civil Engineering Dimension Vol. 25 No. 2 (2023): SEPTEMBER 2023
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9744/ced.25.2.67-77

Abstract

This paper presents the finite element modelling of shear-critical reinforced concrete beams strengthened with U-wrapped CFRP fabrics using ATENA. Fracture-plastic constitutive models, implemented in the context of smeared crack and crush-band approach, were employed to represent the nonlinear behaviours of concrete. CFRP U-wraps were modelled as smeared rein­forcement and bonded to the concrete surface using an interface element, considering appropriate bond properties. To this end, two large lightly reinforced concrete T-beams from tests undertaken by Brindley in 2018 were analysed and predictions of the load-deflection response and failure mode are presented to demonstrate the accuracy of the modelling. Moreover, parametric analyses were performed to assess the effectiveness of CFRP U-wraps for strengthening deteriorated members. It is shown that the response of the beams can be predicted accurately, capturing successfully the brittle shear failure mode observed experimentally. It is also shown that CFRP U-wraps are useful for reducing the brittleness of shear-critical beams.