Aep Patah
Department Of Chemistry, Faculty Of Mathematics And Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Penentuan Resistivitas Tak-Terkompensasi Cairan Ion Berbasis Imidazol dengan Metode EIS: Pengaruh Panjang Alkil dan Perbedaan Anion Patah, Aep; Rachmawati, Yulia; Utari, Riyadini; Rochliadi, Achmad
Jurnal Riset Kimia Vol 11, No 2 (2020): September
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jrk.v11i2.359

Abstract

Ionic liquids have interesting properties because they have several advantages compared to conventional organic solvents, such as high thermal stability, high viscosity, good solvent properties, non-flammable, and non-volatile. In electrochemistry, ionic liquids can be used as solvents without the addition of electrolytes. However, ionic liquids still have resistivity properties (uncompensated resistance), thus ohmic drop measurements are needed for a potential correction. Imidazole-based ionic liquids, which are known for their high conductivity and commonly used as a solvent, have been measured of their resistivity as a function of temperature, and type of their cations/anions. Electrochemical Impedance Spectroscopy (EIS) method was chosen to measure the resistivity of ionic liquids and Bode plot was generated for the analysis of the results. The measured resistivities of ionic liquids are in the range of 420 to 1500 ohm. It is concluded that the resistivity of the imidazole-based ionic liquid is influenced by the size of their constituent ions, the viscosity, and the resistance is decreased with increasing temperature.
EFFECT OF CRYSTALLINITY TO OVERPOTENTIAL ON Ni₃Fe ALLOY AS ELECTROCATALYST IN HYDROGEN EVOLUTION REACTION Qonita Mu'minah; Achmad Rochliadi; Aep Patah
Jurnal Sains Materi Indonesia Vol 21, No 3: APRIL 2020
Publisher : Center for Science & Technology of Advanced Materials - National Nuclear Energy Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/jsmi.2020.21.3.5963

Abstract

EFFECT OF CRYSTALLINITY TO OVERPOTENTIAL ON Ni3Fe ALLOY AS ELECTROCATALYST IN HYDROGEN EVOLUTION REACTION. Ni-Fe alloys can be used as electrocatalyst for the hydrogen evolution reaction (HER) in an alkaline solution. HER consumed highly energy and overpotential driven. The overpotential value corresponding to the electron transfer in reaction can be affected either by metal combination or alloy as a cathode. Ni₃Fe  alloy had been successfully synthesized by the electrodeposition method using direct-current (DC) on a 304 L type stainless steel substrate. The modified Watts bath deposition was used NiCl2·6H2O and FeCl3·6H2O as precursors of the alloy. The optimum conditions of the reaction were obtained at pH of the solution is 2.20±0.02 with 25 mA/cm² current density at 55 °C for 160 minutes. Ni₃Fe alloy was characterized by Powder X-ray Diffraction (PXRD), Energy-Dispersive X-ray Spectroscopy (EDX), and Scanning Electron Microscopy (SEM). The electrocatalytic property of Ni3Fe alloy was electrochemically measured in 1 M KOH solution by polarization method using a Tafel plot with a scanning rate of 1 mV/s. As a result, the mass ratio of Ni²+ /Fe³+ in bath deposition influenced the electrocatalytic property of Ni₃Fe alloy. Ni₃Fe alloy with a higher crystallinity lowered the overpotential value of HER up to 67% compared to Ni metal.
Penentuan Resistivitas Tak-Terkompensasi Cairan Ion Berbasis Imidazol dengan Metode EIS: Pengaruh Panjang Alkil dan Perbedaan Anion Aep Patah; Yulia Rachmawati; Riyadini Utari; Achmad Rochliadi
Jurnal Riset Kimia Vol. 11 No. 2 (2020): September
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jrk.v11i2.359

Abstract

Ionic liquids have interesting properties because they have several advantages compared to conventional organic solvents, such as high thermal stability, high viscosity, good solvent properties, non-flammable, and non-volatile. In electrochemistry, ionic liquids can be used as solvents without the addition of electrolytes. However, ionic liquids still have resistivity properties (uncompensated resistance), thus ohmic drop measurements are needed for a potential correction. Imidazole-based ionic liquids, which are known for their high conductivity and commonly used as a solvent, have been measured of their resistivity as a function of temperature, and type of their cations/anions. Electrochemical Impedance Spectroscopy (EIS) method was chosen to measure the resistivity of ionic liquids and Bode plot was generated for the analysis of the results. The measured resistivities of ionic liquids are in the range of 420 to 1500 ohm. It is concluded that the resistivity of the imidazole-based ionic liquid is influenced by the size of their constituent ions, the viscosity, and the resistance is decreased with increasing temperature.
Microwave-Assisted Synthesis of DUT-52 and Investigation of Its Photoluminescent Properties Ruth Febriana Kesuma; Aep Patah; Yessi Permana
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (442.367 KB) | DOI: 10.9767/bcrec.14.1.2369.124-129

Abstract

A zirconium metal-organic framework (MOF) of DUT-52 (DUT: Dresden University of Technology) was synthesized herein by reacting zirconium tetrachloride (ZrCl4) and 2,6-naphthalenedicarboxylic acid (H2NDC) in DMF under microwave heating at 115 oC for 25 min. This synthetic procedure was more efficient than a solvothermal method, by which a long thermal exposure (24 h) of 100-150 oC was required to produce the same MOF. The MOF has a thermal stability of 560 °C, prior to partial loss of interconnected 2,6-naphthalenedicarboxylate (NDC) linkers at some structure building units (SBU). Crystallinity of this DUT-52 was ca. 77 %, which was the same as one synthesized solvothermally.  Diffuse Reflectance UV-Vis spectra revealed an absorption at λex of 287 nm, which was equivalent to a bandgap energy of 4.32 eV.  Electron excitations of this DUT-52 at 275 and 300 nm gave emission wavelength of 433 nm (a purple region),  indicating a prospective use of DUT-52 as a photoluminescent material. 
Microwave-Assisted Synthesis of DUT-52 and Investigation of Its Photoluminescent Properties Ruth Febriana Kesuma; Aep Patah; Yessi Permana
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.1.2369.124-129

Abstract

A zirconium metal-organic framework (MOF) of DUT-52 (DUT: Dresden University of Technology) was synthesized herein by reacting zirconium tetrachloride (ZrCl4) and 2,6-naphthalenedicarboxylic acid (H2NDC) in DMF under microwave heating at 115 oC for 25 min. This synthetic procedure was more efficient than a solvothermal method, by which a long thermal exposure (24 h) of 100-150 oC was required to produce the same MOF. The MOF has a thermal stability of 560 °C, prior to partial loss of interconnected 2,6-naphthalenedicarboxylate (NDC) linkers at some structure building units (SBU). Crystallinity of this DUT-52 was ca. 77 %, which was the same as one synthesized solvothermally.  Diffuse Reflectance UV-Vis spectra revealed an absorption at λex of 287 nm, which was equivalent to a bandgap energy of 4.32 eV.  Electron excitations of this DUT-52 at 275 and 300 nm gave emission wavelength of 433 nm (a purple region),  indicating a prospective use of DUT-52 as a photoluminescent material. 
Conductivity and mechanical properties of PEO/PVA/UiO-66 composite polymers for membrane of lithium-ion batteries Patah, Aep; Rochliadi, Achmad; Husein, Aditya; Ramadhan, Dadang
Communications in Science and Technology Vol 9 No 2 (2024)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.9.2.2024.1515

Abstract

Lithium batteries are crucial for energy storage in electronics, transportation, and industrial sectors. However, lithium-ion battery separators such as Celgard require significant improvements, particularly in ionic conductivity (?). Combining Metal-Organic Frameworks (MOFs) with polymers is expected to create a separator membrane that enhances conductivity and mechanical properties in lithium-ion batteries. UiO-66 MOFs were synthesized using the solvothermal method at 120? and then composited with polyethylene oxide (PEO) and polyvinyl alcohol (PVA) polymer membranes using the solution casting method. The UiO-66 MOFs/PEO/PVA polymer composites were made by varying the UiO-66 content from 2% to 8% (w/w) while keeping a constant LiPF6 concentration of 9% (w/w). These composites were characterized using X-ray Diffraction (XRD) and Fourier-Transform Infrared spectroscopy (FTIR). Subsequently, the EIS test and tensile tests assessed the performance of the composite membranes. The resulting membrane with 6% (w/w) UiO-66 MOFs exhibited a conductivity (?) of 5.60 × 10–3 S cm–1 and a tensile strength of 32.5 MPa.
From Zircon Sand to Advanced Functional Materials: Synthesis and Characterization of Zirconium-Based Metal Organic Frameworks Palapessy, Berryl Vendo; Reda, Brilyan Muhammad Rasyid; Failamani, Fainan; Patah, Aep
Indonesian Journal of Chemical Research Vol 13 No 2 (2025): Edition for September 2025
Publisher : Jurusan Kimia, Fakultas Sains dan Teknologi, Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/ijcr.2025.13-ber

Abstract

This study presents an integrated approach for converting zircon sand into functional materials based on zirconium metal–organic frameworks (Zr-MOFs). Zirconium was extracted through three main steps: alkali fusion, water leaching, and nitric acid leaching, resulting in a precursor identified as Zr(OH)2(NO3)2·1.33H2O (ZON). Characterization using XRF, FTIR, XRD, and SEM-EDX revealed that ZON possesses a high zirconium content (94.87% relative to the total metal content) and distinct structural features. The ZON compound was subsequently utilized as a novel precursor in synthesizing of three types of Zr-MOFs: UiO-66, MOFs-801, and MOFs-808. Structural and morphological analyses indicated that all three MOFs were successfully formed with high crystallinity. These findings demonstrate that locally sourced zircon sand has strong potential as a sustainable and cost-effective raw material for MOF synthesis, while also bridging the knowledge gap between zirconium extraction and the development of sustainable materials chemistry based on local mineral resources.