Claim Missing Document
Check
Articles

Found 3 Documents
Search

DONGENG AYAM DAN KELINCI BERSAUDARA BERBASIS ANIMASI 2 DIMENSI Taqwa Hariguna; Adi Wijiono
Telematika Vol 10, No 1: Februari (2017)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (943.389 KB) | DOI: 10.35671/telematika.v10i1.481

Abstract

Dongeng merupakan cerita yang biasanya berisi tentang khayalan dan mengandung pesan moral tinggi. Namun seiring dengan berkembangnya teknologi, sehingga anak-anak lebih suka melihat sinetron, film, main game, internet. Oleh karena itu orang tua zaman sekarang dituntut untuk bisa bercerita atau mendongeng dengan menarik sekaligus menghibur, agar tidak kalah dengan teknologi dan dunia hiburan yang semakin canggih. Salah satu teknologi yang berkembang yaitu animasi. Sehingga tujuan dari penelitian ini adalah merancang dan membuat Dongeng Ayam Dan Kelinci Bersaudara Berbasis Animasi 2 Dimensi agar dapat menyampaikan pesan moral yang terdapat didalamnya. Animasi ini dibuat dengan menggunakan Adobe Flash Profesional CS6. Metode pengumpulan data yang digunakan adalah studi kepustakaan. Sedangkan metode pengembangan data system yang digunakan adalah Multimedia Development Life Cycle (MDLC) yang terdiri dari tahapan pengonsepan, perancangan, pengumpulan material, pembuatan, pengujian, pendistribusian. Hasil penelitian yang dicapai adalah animasi berupa dongeng ayam dan kelinci bersaudara berbasis animasi 2 dimensi yang dikemas secara menarik sehingga  memiliki fungsi sebagai penyampai pesan moral.
An Empirical Study to Understanding Students Continuance Intention Use of Multimedia Online Learning Taqwa Hariguna
International Journal for Applied Information Management Vol. 1 No. 2 (2021): Regular Issue: July 2021
Publisher : Bright Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/ijaim.v1i2.10

Abstract

The purpose of this study was to assess students' ongoing intentions towards online multimedia learning such as perceived usefulness, ease of use, and flow experience. The sample of this study was 523 students who used off-campus/online learning resources and examined the content of online learning resources and their multimedia aspects. The Extended of Technology Acceptance Model (TAM) was used to predict students' continuing intentions. The results showed that students' intentions were positively influenced by their perceived usefulness, ease of use, and flow experience. It is suggested that the designer of multimedia online learning should be more specific in determining the target users to receive and cultivate a more positive sustainable intention.
INTEGRATING AHP IN BIG DATA RISK MANAGEMENT FOR FINANCIAL INSTITUTIONS: A SYSTEMATIC APPROACH Nurwita Widyastuti; Taqwa Hariguna; Dhanar Intan Surya Saputra
Multidiciplinary Output Research For Actual and International Issue (MORFAI) Vol. 5 No. 3 (2025): Multidiciplinary Output Research For Actual and International Issue
Publisher : RADJA PUBLIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54443/morfai.v5i3.3991

Abstract

The big data revolution has reshaped risk management paradigms in the financial sector while introducing complex, dynamic, and multidimensional risk challenges. This study regularly examines the integration of the Analytic Hierarchy Process (AHP) into big data risk management for financial institutions through a Systematic Literature Review (SLR) using the PRISMA protocol, covering publications from the past decade. Findings indicate that AHP—in both classical and modified forms such as Fuzzy AHP and AHP-DEA—effectively structures hierarchical risk frameworks that integrate quantitative criteria (probability, financial impact) and qualitative aspects (reputation, compliance). Big data integration enriches the weighting process with real-time data from internal sources, markets, and public sentiment, thereby reducing subjective bias and enhancing decision reliability. This approach enables adaptive risk prioritization in response to market and regulatory changes, overcoming the limitations of static AHP models and supporting more holistic, measurable risk mitigation. The results underscore that the AHP–big data framework offers financial institutions a competitive advantage through rapid, evidence-based, objective, and sustainability-oriented decision-making.