Risvi Ayu Imtihana
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana; Imran M.; Asmara Karma
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses a Newton-type method for multiple roots, which is derived using a linear combination of Newton’s method for multiple roots and an iterative method derived based on a quadrature Gauss-type. Analytic studies show that this iterative method has a third order of convergence and for each iteration, it requires function evaluations three times, so that the efficiency index of the method is 1.44225. Furthermore, computational tests show that the method is superior to other mentioned methods, in terms of the number of iterations required to obtain the roots.